-109 -

CHAPTER 13,

A WORKED EXAMPLE

Thebfollowing example is given in terms of SIMULA. It demon-
strates a technique of aggregating individual items into groups
of items in order to increase program efficienéy. The system

described is a simplification of an actual case study carried
out at the Norweglan Computing Center, Oslo,

Given a Jjob shop consisting of machine groups, each containing

a given number of identical machines in parallel, The system
will be described from a machine point of view, i.e., the
products flowing through the system are represented by processes
which are passive data records, The machines'operate on the
products by remote accessing,

The products consists of orders, each for a given number of
product units of the saswe type. There is a fixed number of
product types, For each type there is a unique routing and
given processing times.

For each machine group (number mg) there i1s a set avail[mg]of
idle machines and a set gque[mg], which 1s a product queue

common to the machines in this group., The products are processed
one batch at a time, One batch consists of a given nuﬁber of
units, which must belong to the same order, The batch size
depends on the product type and the machine group,

A product queue is regarded as a queue of orders, The queue
discipline is essentially first-in-first-out, the position of

an order in the queue being defined by the arrival of the first
unit of that order, However, 1f there is less than an acceptable

This chapter 1s part of a serlies of lectures originally given
by 0.~-J. Dahl at the NATO Summer School on Programming
Languages, Vilard-de-Lans, 1966,




-111-

of them, An opart process will reference the one at the next
step through an element attribute "successor". An order is ’
thus represented by a simple chain of opart records., The one
at the head has no successor, the ocne at the tall has its
attribute "last" equal to true. The chain "moves™ through the
system by growing new heads and dropping oft tails,

que[1] | que[J]. : que[k]

machine group 1 machine group J machine group k

Fig. 3.

Three consecutive steps in the schedule of products of

a given type. A product queue consists of oparts (circles)
connected by vertical lines, Oparts belonging to the

same order are connected by horisontal lines, Machines

are represented by squares, A dotted line between an
opart and a machine indicates a batch of units in processing.
when thre batch of the third opart in que[J] is finished,

a new opart receiving this batch will be generated an
included in quelk]. _ ' \

The following piece of program is part of the head of a SIMULA
block describing the above system., A machine activity 1is given.
For clarity only statements essential for the behaviour of the
model are shown. Thé’program is not complete.



13,

15,

16.
17.
18,
19.
20.

21,

22,
23.
24,
- 25,
126,
27,
28.
29.
30,

-112-

set array que, avail [1:nmg]; integer U;
integer procedure nextm (type, step); integer type, step;....
real procedure ptime (type, step); integer type, step;....;

‘integer procedure bsize (type, mg); integer type, mgj....;

activitx opart (ono, type, step, nw, np, last, successor);
integer ono, type, step, nw, np;
Boolean last; element successor;;

activity machine (mg); integer mg;
begin integer batch, next; Boolean Bj; element X;

‘serve: X:= head (que[mg]);

for X:= suc (X) while exist (X) do
inspect X when opart do

begin batch := bsize (type, mg); -
if nw < batch then begin
if iast then batch := nw else go to no end;

nw := nw - batchj np := np + batchy
if last A nw = O then remove (X);j
activate first (avail[mg]);
hold (batch x ptime (type, step)®xuniform (0.9, 1.1, U));
np := np - batchj; B := last A nw + np = 0Oy
next := nextm (type, step);
inspect successor when opart do
begin nw := nw + batchj last := B end
otherwise begin successor := _
new opart (ono, type, step + 1, batch, 0, B, none);
include (successor, que [next]) end;
activate first (avall [next]);
go_to serve;
no; end; 7 A
wait (avail [mg]); remove (currént); go to serve end;

]

R R




Comments.,

Line 1,

Lines 2-4,

Lines 5-7.

Line

Line 9.

8.

10.

Line

Line

Line

1.

12,

~113-

The sets will contain oparts and idle machines
respectively. The variable U defines a pseudo-
random number stream (line 19),

The functions "nextm" and "ptime" specify the
next machine group ard the current processing
time for a given product type and step in the
schedule., "bsize" determines the batch size,
given the product type and machine group number,
The three functions are left unspecified.

The meanings of the attributes of opart processes
have been explained above. The activity body is
a dummy statement: an opart process is a data
record with no associated actions,

The machine activity extends to and includes
line 30. The parameter mg is the machine group
number. Machines belonging to the same group
are completely similar,

"batch" is the size of the current batch of
units, "next" is the number of the next machine
group for the units currently belng processed,
the meaning og "B" is explained below (line 20),
and "X" is used for scanning,

Prepare for scanning the appropriate product queue.

Scan. The controlled statement is itself a
connection statement (lines 12-29),

There is only one connection branch (lines 12-29),
Since a product queue contains only opart records
connection must become effective, The attributes
of the connected opart are accessible inside the
connection block.,




Line 13.

Lines 14, 15,

Line 16.

Line 17,

Line 18,

Lines 19.

Line 20,

-114-

'Compute the standard batch size.

A smaller batch is only accepted if the opart>is
at the tail end of the chain., In this case "nw"
is nonzero (cf. line 17), and the units are the
last ones of the order. Otherwise the next
opart 1s tried,

"batch" units are transferred from the waliting
state to the in-processing state by reducing nw
and increasing np.

The opart is removed from the'product queue when
processing has started on the last units of the
order,

The current machine has found‘an acceptable batch
of units, and has updated the product queue.

There may be enough units left for another batch,
therefore the next avallable machine in this

group (mg) is activated, If there 1is no idle
machine, the set avail[mg] is empty and the
statement has no effect. See also lines 27 and 30.

The expected processing time is proportional to
the number of units in the batch. The actual
processing time is uniformly distributed in the
interval + 10% around the expected value. The
sequence'of pseudo-random drawings is determined
by the initial value of the variable U.

Processing is finished; np is reduced. The Boolean
variable B gets the value true if and only if

the last units of an order have now been processed.
In that case the connected opart should drop off
the chain at this system time (see comments to

line 28). It follows that B is always the correct
(next) value of the attribute "last" of the
succeding opart (lines 23, 25).

A T o k0t

e R

R



Line 21,

Line 22.

' Line 23.

Lines 2%, 25,

Line 26,

Line 27.

-115~

Compute the number of the machine group to receive
the current batch of units,

The element attribute "successor" is inspected.
The connection statement, iines 22-26, has two
branches. L ' ‘ '

This is a connection block executed if "successor" .
refers to an opart, The latter is a member of:

the product queue of the next machine group. It
receives the processed batch of units, which are
entered in the waiting state. The attribute "last"

-1s updated., Notice that the attributes referenced

in this inner conection block are those belonging

~to the successor to the dpart connected outside (X).

If the connected opért (X) 1s at the head of the
chain the value of "successor" is assumed equal

‘to none, and the otherwise branch is taken. A

new opart is generated, and a reference to 1t is
stored in “"successor", The new opart has the
same "ono" and "type" as the old one, and its
"step" is one greater, It has "batch" units in
the walting state and none in processing. Its
attribute "last" is equal to "B", Since the new
opart has become the head of the chain, its
"successor" should be equal to none. Notice that
the initial value of "last" may well be true,
e.g. if the order contains a single unit,

The new opart is included at the end of the product
queue of the next machine group.

The current machine has now transferred a batch

of units to the product queue.bf next machine group.
Therefore the first available machine (if any) of
that groﬁp is activated. If that machine finds an
acceptable batch it will activate the next machine
in the same group (iine 18)., This takes care of



-117-

e e v, e R T

Line 29. The end of the connection block and of the statement
controlled by the for clause in line 11,

Line 30. If, after having searched the entire product queue,
the machine has found no acceptable batch, it
includes itself in the appropriate "avail" set
qnd goes passive, Its local sequence control
remains within the wait statement as long as the
machine is l1n the passive state. When the machine
is eventually activated (by another machine:
line 27 or 18), it removes itself from the "avail"
set and returns to scan the product queue., The
"gvail"™ sets are operated in the first in-first ocut
fashlon,

The mechanism for feeding orders into the system is .not shown
above. This 1is typlically done by the Main Program or by one or
more "arrival" processes, which generate a pattern of orders,
elither specified in detaill by input data, or by random drawlng
according to given relative average frequencies of product types
and order sizes.

An arrival pattern defined completely "at random" is likely to
cause severely fluctuating product queues, if the load on the
system is near the maximum., The following is a simple way of
rearranging the input pattern such as to achieve a more uniform
load. The algorithm is particulafly effective Lf there are
different "bottle-necks" for the different types of products,

31, activity arrival (type, mgl, pt);
- 32. integer type, mgl; real pt;
33. Dbegin integer units;
34, loop: select (units, type); id := id + 13
35. include (new opart (id, type, 1, units, O, true,
none), que[mgi]);

36. activate first (avail [mgl])s

37. hold (ptsunits); go to loop endj

38. procedure select (n, type)j value type; integer n, typej....;
39. integer id;




-118-

Comments.
Line 31, There will be one "arrival" process for each product §
type. "mgl" is the number of the first machine ]
group in the schedule of this type of product, f
"pt" is a stipulated "average processing time" per i
unit, chosen so as to obtain a wanted average E
throughput of units of this type (see line 37). %
Line 34, The procedure "select" should choose the size, ;
"units", of the next order of the given type, e.g. E
by random drawing or by searching a given arrival {
pattern for the next order of this type. "id" is :
a non-local integer variable used for numbering the !
orders consecutively. ;
i
Line 395, An order is entered by generating an opart record ,
* which contains all the units of the order. The |
units are initially‘in the waiting state, The order f
is filed into the appropriate product queue. The ;
.~ set membership is the only reference to the opart i
stored by the arrival process, Consequently this ;
opart will leavé the system when it becomes empty é
of units, as assumed earlier (line 28). ;
Line 36. A machine in the appropriate group is notified of
the arrival of an order,
Line 37. The next order of the same type is scheduled to

arrive after a walting time proportional to the v
size of this order, which ensures a uniform load
of units (of each type).

The "output“ of units from the system can conveniently be

arranged by routing all products to a dummy machine group at
 the end of the schedule. 1t contains one or more "terminal

machines" (not shown here) which may perform observational

functions such as recording the completion of orders.




- 119 -

The dynamic setup of the system 1s a separate task, since
initially the Maln Program is the only process present. The
Main Program should generate (and activate) all processes which
are "permanent" parts of the syStem, such as machines, arrival
processes and observational processes, The system can be
started empty of products, however, a "steady" state can be
reached in a shorter time if orders (opart records) are
generated and distributed over the product queues in suitable
quantities, -

'The experimental results are obtained by observing and reporting
the behaviour of the system. Three different classes of outputs

can be distinguished.

1), On-line reporting. Quantities describing the current state

of the system can be printed oul, e.g. with regular system
time intervals: lengths of product queues in terms of units
+walting, the total number of units in the system, the number
. of idle machines in each group, etc, A wore detalled on- .
line reporting may be required for program debugging.

~'2) Accumulated machine statistiecs., By observing the system
over an extended period of system time averages, extrema,
histograms, etc., can be formed. Quantities observed can
be queue lengths, idle times, throughputs, and so on. The
accumulation of data could be performed by the machine

processes themselves.

Example. To accumulate a frequency histogram of the idle
periods.of different lengths for individual machines, insert
the following statements on either side of the "wait"
statement of line 30:

ntidle := time" and "histo" (T, H, time - tidle, e,
where "tidle" is a local real variable, and T and H are
arrays. T[1] are real numbers which partition observed
idle periods (time - tidle) into classes according to their
lenths, and H[1] are integers equal to the number of




3)

-120.

occurrences in each class., The system procedure "histo"
which will increase H[i] by one (the last parameter), where
i is the smallest integer such that T[i] is greater than or
equal to the idle period "time - tidle", T and H together
thus define a frequency histogram, where T[i] - T[1 - 1] is
the width of the i'th column, and H[i] is the column length,

Accumulated order statistics. During the life time of an

opart record the "history" of an order at a glven machine
group can be accumulated and recorded in attributes of the
opart. The following are examples of data which can be
found. |

The arrival time of the first unit of the order at this
machine group is equal to the time at which the opart is
generated. The departure time of the last unit is equal tc
the time at which the variable B gets the value true

(line 20 «of a machine connecting the opart).

The sum of waiting times for every unit of the order in

this queue is equal to the integral with respect to system
time of the quantity nw (which is a step function of time).
The integral can be computed by the system procedure "accum".
The statements '"nw := nw + batch" (lines 16 and 23) are
replaced by "accum (anw, tnw, nw, + batch)", where the real
variables anw and tnw are additional attributes of the

opart process, with initial values zero and "time"
respectively. The procedure will update nw and accumulate
the integral in anw, It is equivalent to the statements:

anw := anw + nw # (time - tnw); tnw := timej; nw = nw + batch;

It is worth noticing that arrival times, waiting times, etc.,
can not in generali be found for individual units, unless

the units are treated as individuals in the program. Neilther
can the maximum individual waiting time for units in an
order. . The average waiting time, however, 1s equai to the
above time integral divided by the number of units in the
order,




2121-

The complete history of an order in the shop 1s the
collection of data recorded in the different oparts of the
order. These data can be written out on an external storage
medium at the end of the Lifetime of each opart. I.e. an
output record could be written out before line 28, whenever
B is true, containing items such as the order number, ono,
the sum of waiting times, anw, the current system time, etc.
When the simulation has been completed, the data records
can be read back “n, sorted according to order numbers, and
processed to obtain information concerning the complete
order, such as the total transit time, total waiting time
etc,

The same information can be obtained by retaining the
‘ complete opart chain in the system until the order is out
of the shop. However, this requires more memory space.
The chain can be retained by making the arrival process
include the initial opart in an auxiliary set, or by having
a pointer from the opartbcurrently at the head of the chain
back to the initial one. The opart chain can be processed
by the terminal machine. (The order is completely through
the shop at the time when the attribute "last" of the opart
in the terminal product queue gets the value true.) 1In
the former case the terminal machine should also remove the
appropriate opart from the auxiliary set, in order to get
rid of the opart chain. |




-122-

Library procgdures.

A. _Alphabetic order.

Name Result Arithmetic No.of .param. Report reference

ACCUM. none L 8

CANCEL - 1 4.8

CARDINAL integer 1 3.7

CLEAR none 1 3.7

CURRENT - element 0 L.b z

DISCRETE integer 2 7.2 ’

DRAW Boolean 2 7.2

EMPTY - 1 3.7

TQUAL - 2 (no reference) ;

EVTIME real 1 L. 4 :

EXTST Boolean 1 3.7 :

FINISHED - 1 TR |

FIRST element 1 3.7 i

FOLLOW none 2 3.7 ;

HEAD element 1 3.4.2 !

HISTD integer 2 7.2 :
- HISTO none 4 8

IDLE Boolean 1 b g

INCLUDE none 2 3.7 ;

LAST element 1 3.7 !

LINEAR real 3 7.2 !

MEMBER element 2 3.7 {

NEGEXP real 2 7.2 ;

NEXTEV ~ element 1 b4 :

NORMAL real = 3 7.2 !

NUMBER element 2 3.7 ;

RDINAL integer 1 3.7 P

PASSIVATE none 0 L.2 ?

POISSON integer 2 7.2 §

PKCD none 2 3.6 i

PRECEDE - 2 3.7

PRED element 1 3.4.2 |

PROC - 1 3.4.1 '

PSNORM real L 7.2 i

RANDINT integer 3 7.2 i

REMOVE none 1 3.6 :

SAME Boolean 2 3.5

SIMILAR - 2 3.5

SuC element 1. 3.%.2

SUCCESSOR - 2 3.7

TERMINATE none 1 4.2

IME real 0 boh

TR NSFER none 2 3.7

UNIFORM real 3 7.2

WAIT none 1 4.2



-123-

B Aritmetic order.
1, No arithmetic.

2. Integer.

: 3. Real,

4. Boolean.

HOLD

~ HISTD

Name o N.of p.

ACCUM
CANCEL
CLEAR
FOLLOW
HISTO

INCLUDE
PASSIVATE
PRCD
PRECEDL
REMOVE
TERMINATE
TRANSFER
WAIT |

NS aRNNON = ==

CARDINAL
DISCRETE

ORDINAL
POISSON
RANDINT

WO —

EVTIME
LINEAR
NEGEXP
NORMAL
PSNORM
TIME
UNIFORM

WO Fwplw—

DRAW
EMPTY
EQUAL
EXIST
FINISHED
IDLE
SAME
SIMILAR

HEEEEEO D

Param. types

“w w § - - -

mE »n e
el
bs o

nEEEHEE EX-EnE
~
n

HTnWXWm
b
i b

=
&
¥

s RssReclis ol coi

§ o w v
~
4 1 -
-
—

0 X T e

be9)

-

-~

-
=

==




. Name

CURRENT
FIRST

- HEAD

LAST
MEMBER

- NEXTEV

NUMBER
PRED
PROC

- 8SUC

SUCCESSOR

N.of p.

HEODEHEEHEOnOn!m

e ~Péram{ types

L e, A RAPRSIBSIN e Nt s et L

PR




