NORSK REGNESENTRAL | BOBWEGIAN @@5@’@%’?@ ¥ CENTER

Forskningsvn. 1 B, Blindern, Oslo 3, Norway, telefon (02) 46 69 30

Publication No. S§.56.0

360/370 SIMULA

EXTERNAL PROCEDURE LIBRARY -

Norwegian Computing Center

lst November 1973

Karel Babcicky

Note: The procedures described in this publication are compatible
with the SIMULA Run Time System Release 2.1 and all its

sSuccessors.

To NCC users of 360/370 SIMULA System at TEAMCO:

Any of the SIMULA external library pracedures may be used
in a SIMULA program without an explicit declaration, pro-

viding that

1) ‘the SIMULA program is compiled using one of NCC's

catalogued procedures.

2) %COPY OSSIMULA card is inserted into the program deck at
a position where the omitted declarations would be

placed otherwise.

Table of contents

Timing services

CLOCK
CPUTIME
DATE
SETTIME
TIMEOFDAY
TIMER

RTS and 0OS interface

COPYTEXT
Environmental enquiry
ERROR

FILENAME

LINECNT

MAXLOC

PARM

Programming aids (user conveniences)

GET
GETID
MAX

MIN

PUT
READINTO
WRITEOUT

Debugging aids

CODE
DEBUG
HEXDUMP

(2NN 62 BN - S VS A O

11
12
13

14
16
17
17
14
18
19

20
24
20

CLOCK

function :

declaration

parameters

result

elapsed time measurement (in hundredths of

seconds) .

external assembly integer procedure CLOCK

none

time of day in hundredths of seconds, i.e.
the absolute difference between the results of
two successive calls is the time which elapsed

between the calls.

CPUTIME
function : measures CPU time usage.

declaration : external assembly long real procedure CPUTIM%

parameters : none.

result : total CPU time spent since the beginning of
the SIMULA program execution, expressed in

hundredths of seconds.

DATE

function : provides date information.

declaration : external assembly text procedure DATE

parameters : none.

result : reference to a text object of length 11

whose contents are as follows:

NNuMMNWYYYY

where nn is day of the month
mmm are the first three letters of the
name of the month

yyyy is the year,

these data refer to the current valid date.

SETTIME

function : schedules duration of program execution in

real time.

declaration : external assembly procedure SETTIME

parameters : 1) first parameter must be of (short) integer
type; its value is cpu~time in hundredths
of seconds for which the program execution
should continue after SETTIME call.

2) second parameter (optional) is a label from
which the control will resume after the time
period specified by the first parameter is
exhausted. If this parameter is absent, the
program will automatically terminate (with
return code = 0); after the specified time

period expires.

result : none.

notes : 1. procedure SETTIME works as a dummy procedure
if not called from the outermost block level
or if the value of the first parameter exceeds
the remaining time interval set by RTS para-
meter TIME.

2. otherwise; there is no interference between
the RTS TIME parameter, procedure CPUTIME and
SETTIME.

3. a new call on SETTIME issued before the time
period set by the previous call expired will
override the previous time setting, providing
that neither of the calls was rejected due to

reasons mentioned in note 1.

TIMEOFDAY

function : access to system clock.

declaration : external assembly text procedure TIMEOFDAY
parameters : none.

result : reference to a text object of length 11

whose contents are as follows:
hh:mm:ss.cc

where hh 1is hours
mm 1is minutes
ss 1is seconds, and

ce is hundredths of seconds,

at the time of the call.

TIMER
function : elapsed time measurement (in timer units).
declaration : external assembly integer procedure TIMER
parameters : none

result : time (expressed in timer units, 1TU = 26.04166

microseconds) which elapsed since the first call
on this procedure was made in the program (the

first call consequently returns 0).

COPYTEXT

function

calling
sequence

result :

special purpose assembly routine to be used
for creating copies of text objects when a
(text type) external procedure is written in
assembler or PL360.

IM 0,2,TEXTDESCRIPTOR of the text to be copied
L 15,=V(COPYTEXT) |

BALR 14,15

USING #*,15

the reference to the created text object is
returned in the form of a text descriptor (see
Programmer's Guide, Appendix F) in registers

RO, Rl and R2.

ENVIRONMENTAL ENQUIRY ROUTINES

function : provide information about a particular
implementation of the SIMULA system and
thus enable even higher portability of
SIMULA programs.

declarations : external assembly integer procedure BITSININ,
BITSINRE, BITSINSI, BITSINLR, BITSINRF,
BITSINCH, MAXSHORT, MAXINT, BITS

external assembly long real procedure SMALLREAL,
MAXREAL, SMALLONG, MAXLONGR

parameters : none .
results : BITSININ - number of bits in an integer
location '
BITSINRE - number of bits in a real location
BITSINSI - number of bits in a short integer
location
BITSINLR - number of bits in a long real
location
BITSINRF - number of bits in a reference
location
BITSINCH - number of bits in a character
location
MAXSHORT - maximum short integer value
MAXINT - maximum integer value
BITS - free storage size in bits
SMALLREAL - smallest real magnitude
MAXREAL - maximum real magnitude
SMALLONG - smallest long real magnitude
MAXLONGR - maximum long real magnitude
Note: Every call on the procedure BITS forces a

garbage collection prior to free storage

checking.

ERROR

function : forces RT-error with controllable diagnostics
message.

declaration : external assembly procedure ERROR

parameters : optional text parameter
(text value constant i.e. string is also
accepted).

result : no value returned. The call causes a program
interruption with return code = 8, accompanied
by diagnostics: ZYQl04 and a message equal to
the first 16 characters of the parameter
(blanks are appended to the right if the para-
meter text value length is less than 16).
If no parameter was used, the message reads:
FORCED ERROR.

note : This procedure may also be used from other than

the SIMULA environment. This simplifies pro-

- gramming of error exits from non-SIMULA routines
prepared to be used as external procedures by
SIMULA programs.

The only requirements then, are that register Rl
points to the message text, and RO holds the

routine return address leading back to a SIMULA
program. The procedure ERROR recognises itself

whether a call was made from a SIMULA program.

10.

FILENAME

function : access to the external name of a data set.

declaration : external assembly text procedure FILENAME

parameter : one and only one parameter, which has to be a
valid simple reference to an object of an I/0
class.

result : reference to a text object whose value is equal
to the parameter NAME of the FILE object.
(cf. Common Base, 11.1.1, page 87).

note : the result text value is stripped of blanks

before it is returned.

11.

LINECNT
function : access to pagesize of a printfile.
declaration : external assembly [short] integer procedure LINECNT
parameters : one optional parameter, if present it has to be
a reference to a printfile object; if absent,
SYSOUT is substituted.
result : value of LINESPERPAGE attribute of the printfile

which is otherwise inaccessible from the SIMULA

environment.

12.

MAXLOC

function : determines actual size (in records) of a
directfile.

declaration : external assembly integer procedure MAXLOC

parameter one and only one parameter, which has to be

a valid simple reference to an open directfile

object.

result : total number of records in the directfile.

PARN

13.

function : access to EXEC PARM field.

declaration : external assembly text procedure PARM

parameters : none.

result : reference to a text object whose text value

is equal to a parameter passed to the SIMULA

program in the PARM field on the corresponding
EXEC card.

note : 1.

Respective parameters in the PARM field are
separated by commas or equal signs. However,
either of these delimiters may also be a part
of the parameter, providing that they are.
doubled. Example: if the following EXEC card

is used
// ~ EXEC SIMCLG,PARM.GO='A,B=5,C==3"

then the four successive calls on PARM will
return the values "A", "B", "5", "C=3" respec-

tively.

If no parameters are present in the parm
field, or if PAR4 is called after the whole
parameter string was scanned, the returned

value 1is notext

If SIMULA RTS control parameters {(such as
DUMP, TRACE etc.) are used simultaneously,
then the user parameters must follow these

in the PARM field. The use of a slash to
separate these two parameter strings is re-
commended. However, if this is omitted, the
first parameter different from SIMULA RTS
parameters signifies the beginning of the user

parameter portion.

Example:

// EXEC SIHMCLG,PARM.GO='DUMP=5/MYDUMP=10"

GET/PUT
function

declaration

parameters

result

notes

14,

un-edited (binary) input (GET) and output (PUT)

external assembly procedure GET

external assembly procedure PUT

the first parameter has to be a simple reference
to an object of open directfile or infile for GET,
or directfile or outfile for PUT. Remaining
parameters (maximum 17) may be simple variables
or array identifiers of any type but object

reference; constants and labels are not allowed.

no functional value is returned; instead values
of all but the first parameter are transferred
between the core and the file referenced by the
first parameter in the direction indicated by

the procedure in use.

- total amount of information transferred
depends on the type of respective parameters:
4 bytes for integer and real
2 bytes for short integer
1 byte for Boolean or character
8 bytes for long real
or the length of the referenced text value

for text type parameters.

- all but text arrays are checked for correct
type, number of dimensions and total size on
input, &therwise it is user responsibility to
ensure that the sequence of receiving locations

matches the input data pattern.

-~ the position indicator of the current image
determines the starting location of the trans-
ferred chunk on the file. The next image is
automatically used if the current one cannot

accommodate the total amount of data passed.

GET/PUT cont.

15.

It is however user responsibility to bring
in and correctly position the first image for
GET processing and to output the last image

after a PUT call.

function

declaration

parameters

location of identifiers in a text or input

file.

external assembly text procedure GETID

one opticnal parameter, either of type text or

a reference to an object of infile or directfile.

If absent, reference to sysin is assumed.

a reference to a text object whose value is
equal to the identifier found in the text

(input/directfile image) passed as parameter, oOr
notext if the next item does not start with a

letter.

1) The position indicator of the parameter (or
"file".pos) is taken into account, i.e. the
search for the identifier starts from the

current position.

2) The blanks preceding the identifier (if any)

are skipped.

3) The resulting position indicator setting of
the parameter is that following the last
letter (digit) of the identifier.

MIN (MAX)

function

declaration

parameters

result :

Note :

returns the minimum value of the actual

parameters.

external assembly <type> procedure MIN
<type> ::= integer|reall

short integerliggg real

up to 18 parameters of type (short) integer,
(long) real. Arrays are not allowed as

parameters.

MIN returns the minimum value of the actual
parameters as a <type>-value specified in

the declaration.

No fixed point overflow error is recognised
if the magnitude of the converted real
(result) value is greater than the maximum
value of an integer. The latter is then

used as the conversion result instead.

MAX follows the description of MIN except
that the maximum value of the actual para-

meters is returned.

17.

READINTO

function :

declaration

parameters :

result

procedure for free-format input to SIMULA

programs.

external assembly procedure READINTO

up to 18 parameters of type (short) integer,
(long) real, or character. Reference type
parameter, if used, must be a simple reference
to an object of class infile or directfile.
Constants are not allowed, but a parameter may

be an array identifier of suitable type.

new values for actual parameters are obtained

one by cone from input file (default = sysin).

If a parameter is an array identifier, new values

are read and assigned for all elements of the

array, and the decomposition for multi-dimensional

arrays is such that the first subscript varies

more frequently than the second, etc. A parameter
which is a reference to an open infile or direct-

file causes all successive read operations to be

applied to this file.

WRITEQOUT

function :

declaration:

parameters :

result

19.

free format output.

external assembly procedure WRITEOUT

up to 18 parameters of type (short) integer,
(long) real, character or text. Constants and
arrays are also allowed as parameters.
Reference type parameter, if used, must be a
simple reference to an object of class outfile

or printfile or directfile.

values of actual parameters are output one by
one on the attached output file (default =
sysout). The output formats for respective

values are the following:

integer i outint(i,l2)
real y outreal(y,5,12)
short integer j outint(j,6)

long real z outreal(z,ll,lS)
character c outchar (c)

text t outtext(t)

If the actual parameter is an array identifier,
the values of all its elements are output and
the decomposition for multi-dimensional arrays
is such that the first subscript varies more

frequently than the second, etc. A parameter

which is a reference to an open printfile, outfile

or directfile, causes all successive output

operations to be applied to this file.

Each call on WRITEOUT starts output on a new line

and outimage is called implicitly if the line
image is filled before all parameters are pro-

cessed.

CODE, HEXDUMP

function : allows for insertion of machine code segments
into SIMULA source programs, thus giving access
to special machine features that are normally

not accessible from a high level language.

Use of the routine may therefore often result in
an obsolescence of external assembly procedures
that are otherwise used in SIMULA programs for
these purposes. If called as HEXDUMP, it will
print unformatted hexadecimal dumps of either
program or data areas, providing that the in-
serted code segment loads RO and Rl with start
address and the length (in bytes) of the requested

area respectively.

declaration : external assembly procedure CODE

and
external assembly procedure HEXDUMP

respectively.

principles : the list of parameter addresses, the address of
which is passed to the procedure by the administ-
ration routine ZYQFORT, is searched for literals.
These are assumed to represent a bug-free segment
of machine code instructions to which control is
subsequently passed. Return is achieved by

execution of the instruction:
BR 14

that is inserted by CODE at the end of the

users supplied code.

The register situation on entering the inserted

code segment is as follows:

21.

RO = O
Rl = address of the list of parameter-addresses
R2 = address of the location following the

last user instruction
R8 = address of the first non-literal parameter

address
R9 = same as Rl
R10 = starting address of the inserted code

R11 = 1local display

R12 = current driver address
Rl14 = return address leading back to CODE
R15 = procedure CODE entry point

The general register save area is pointed to
by R15 with a displacement of 24. Only the

registers R3-Rl4 are restored on exit.

external .

routines : PL360 global procedure DUMP

data sets : SYSOUT - used optionally if a program/data
area dump is requested (HEXDUMP entry).

output : an optional (HEXDUMP only) output is a hexa-
decimal dump of the indicated area that appears
on SYSOUT. In addition, since registers R0-R2,
as well as floating point registers, are not
restored on exit, they may return a result of
an arbitrary type according to 360/370 SIMULA
standards (cf. PG Appendix F).

parameters : each call on CODE/HEXDUMP may be supplied with

up to 18 actual parameters that_ have to comply

with the following rules.

a) all literal parameters at the beginning of
the list (conveniently expressed in hexadecimal)
will be interpreted as a continuous stream

of machine code instructions and must therefore

side-~effects :

sample calls

22.

constitute an executable bug-free code segment.
It is essential that, when interpreted
numerically, these parameters will represent
integer or real values within the permissible

ranges (see PG 3.1/2).

b) Parameters other than those representing
the machine code instructions have to be
right-adjusted in the actual parameter list
and the start of these is indicated by the

first non-literal parameter.

the only registers affected by CODE call
are RO, R1, R2, Rl4 and R1l5 and eventually

floating point registers.

the calls below will have the following effect

in turn:

- the general register dump will be printed on
SYSOUT

- the dump of the object referenced by X will be
printed on SYSOUT

- the program area lying between labels L1 and
L2 will be dumped on SYSOUT

- the value of lines per page of a printfile
object referenced by PRINT is returned as the
call result in RO

— DDNAME of directfile object D is returned as

result

HEXDUMP (#4100F018,#41100040) ;
HEXDUMP (#58209014,458102000,#58101000;
#48101100,#58002000,X) ;
HEXDUMP (458108004 ,458208000,#18021B12,L1,L2);
CODE (#58108000,#%#58101000,#48001022,PRINT) ;
CODE (#58109018,#58101000,#41101013,4%5820901C,
#58202000,#41000000,D,#80001) ;

-.1'----------'-------------------'------

it is assumed that a potential user of this
routine will be familiar with Appendices F and
G of the Programmer's Guide and the 360/370

remarks

Principles of Operation publication.

24.

DEBUG

function : provides formatted hexadecimal dumps of
relevant core areas under SIMULA object program
execution, i.e. it may be conveniently used as
a debugging tool for both 360/370 SiMULA pro-
grams and 360/370 SIMULA system.

declaration : external assembly procedure DEBUG

principles : the only genuine code of DEBUG takes care of
the parameter retrieval and the overall control
of the routine functioning. The main goal is
accomplished by using the code already present
in ZYQERR and ZYQSTORECOLLAPSE to which the
control is passed from ZYQDEBUG.

external
routines : ZYQLNO

ZYQERR
ZYQSTORECOLLAPSE
PAGE
WRITE
ZYQCou } external data segments
ZYQSTCDA
data sets : SYSOUT - sequential output file used for
output of the dump information

output : except for suppressed page effect, the output
format is very similar to the optional dump
obtained in the case of a run-time errxor. The
amount of the output is controlled by the first

actual parameter supplied at a call:

25.

lst par. is greater output
or equal to :
any negative number <identification line>
0 register dump
1 DEBUG call area dump
1 register area dump
1 displays
6 storage pool-
}all allocated core
6 notice pool
2 operating chain
3 SQS+LSC of all scheduled processes
4 LSC of all non-terminated objects
> storage po01}referable structures only
5 notice pool
any negative number <termination line>
The <identification line> and the <termination
line> have the following formats respectively:
ZYQDEBUG CALLED AT CARD dddd [(copy of 2nd parameter)]
END OF DUMP AT CARD dddd
parameters : only the first two actual parameters supplied

at a call are recognised and checkeq for

correctness.

lst parameter, if present, has to be literal

or a simple variable of type integer or
short integer; Otherwise an error message is

issued and control returns back to the calling

program.

This parameter specifies which information is

to be output according to the table above.

2nd ?arémeter; should be a simple text value
or a simple text variable. This parameter is
optional and no error is recognised if it is

completely missing or incorrectly supplied.

The text value referred by this parameter (if
any) appears on the identification line en-

closed in round brackets.

For the user's convenience, the following equi-

valence holds:

DEBUG; = DEBUG(0);

side-effects : a "false" garbage collection is forced if the
value of the first parameter is greater than or
equal to 2. The extra garbage collection does
not affect further execution of the SIMULA pro-
gram, neither is it recorded in the total number
of storecollapses shown in the termination line

of the program execution.
sample calls : DEBUG; comment prints register dump only;

DEBUG (-1, "START OF CLASS CAR ACTION");

comment may be used for control flow tracing;

DEBUG (100); comment has the same effect as :-
DEBUG (6) ;

Addition No 1 to NCC Publication 56.0

SETCC-

Function:

Declaration:

Parameters:

Result:

Note:

setting of program return code.

external assembly procedure SETCC

one and only one parameter, which has to be a
(short) integer variable/constant with a

value in the range 0 - 4095.

no value returned. The call causes a program
termination with the return code equal to the

parameter value.

omitted parameter or a parameter of incorrect
type causes the call to function as a dummy
statement, The effect of the call with a
parameter value greater than 4095 or negative

is unpredictable.

g

