NORSK REGNESENTRAL
NORWEGIAN COMPUTING CENTER

NETR

SIMULA®

USERS GUIDE
IBM System/360

UNIVERSITETSFORLAGET

Oslo - Bergen - Tromse

® SIMULA is registered trademark of the Norwegian Computing Center

Revised pages

Section: 1.2
System/ 360 Page: °
| STMULA Leveli 1
Date: 1/4-1973
USERS GUIDE Originator: AL

To make the use of subscripted variables very flexible, one
is allowed to write arithmetic expressions in the subscript
positions, so that if I = 2, for example, then LONGSIDE(2#I)
and LONGSIDE(4) refer to the same quantity.

A CHARACTER ARRAY is used to represent the crossword. A
blank is represented by the CHARACTER constant 'w' and a
blocked out square by '#'. The declaration of the ARRAY is:

CHARACTER ARRAY CWORD (O0:N+1, 0:N+1).

representing the crossword (dimensions 1 through N), and the
rim (dimensions 0 and N+1). This will make available (N+2)2
variables of type CHARACTER each initialised to the initial
value 'A', binary zero (CHAR(0)). N.B. several CHARACTERS

are not visible when printed - this is one of them. It is not
the same CHARACTER as blank. To distinguish, blank is written
"l

The strategy is (in words):

1) N, the number of rows and columns of the crossword itself

is given on the first card

2) Read in the data from cards - each row being represented

on a fresh card

Characters may be read in one by one by successive calls
on INCHAR.

Section: 1.3

Syétem/360 Page: b
SIMUL A _ Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

The coding is:

L.NEXT :- ST,

ST :- Lj

COMMENT #*¥#NOW L IS INSERTED### |
C.NEXT :- ST;

ST := C;

COMMENT ###NOW C IS INSERTED### ;

Snapshots before and after the insertion of L are:

before ST .

— 7

ST

after

<—7,

The coding is a repeat except for a parameter saying which
object is to be inserted. The PROCEDURE concept enables us
to give CLASS STACKABLE procedure attribute "INTO", and then

we can write

L.INTO (ST)-
C.INTO (ST)

}
for the same effect. This is not only more concise, but more

readable than before. This time we have to be rather careful

Section: 2.2.2

. m
System/ 360 Page:
SIMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL
f) separators
name graphic use
comma s separating elements in lists
dot . denoting decimal point in

REAL numbers;

remote accessing

colon : follows labels;
follows VIRTUAL;
separates array bounds in

array declarations

becomes HE in value assignments
denotes e in reference assignments
semicolon H separates declarations and

statements;y
separates various parts of

procedure and class headings

dollar $ may be used instead of a
semicolon

blank u used as a separator

hash # precedes a hexadecimal con-
stant

underscore - used in 1dentifiers

(c.g. RATL_OF_PAY)

Section: 2.2.Y4

Page: 1
System/360 .
SIMULA Level
Date: 26/11-1975
USERS GUIDE Originator: PW
2.4 THE USE OF BLANKS
Identifiers, arithmetic constants, composite operators (e.g. =/=),

key words (e.g. BEGIN) may not contain blanks. Blanks are per-
mitted as CHARACTER-constants and in TEXT-constants.

Identifiers, constants and key words may not be immediately
adjacent. They must be separated by an arithmetic operator,
parenthesis ("(" or ")"), reference comparator, negation (-),
non-key-word relational operator (<,<=,2,n=,>,>=,==,=/=), comma,
dot, colon, becomes symbol (f=), denotes symbol (:-), . semicolon,

or blank. Moreover additional intervening blanks are always

permitted.

Examples:
X + Y is equivalent to X+Y
A (I) is equivalent to A(I)

A =X =Y is equivalent to A:=X:=Y

System/ 360

Section: 2.2.5

Page: 2
STMULA Level: 1

Date: 1/4-1973
USERS GUIDE Originator: AL

bX

c)

IF X > 0 THEN BEGIN
END OF TRUE PART

ELSE BEGIN
END OF FALSE PART,

Where the strings "OF TRUE PART" and "OF FALSE PART"

are treated as comments.

X := X COMMENT##THAT WAS X;##2 COMMENT##SQUARED; ;
is equivalent, as regards program execution, to
X 1= X##2;

Section: 2.3
, Page: 1
System/360 :
SIMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

3 IDENTIFIERS

An identifier is a string of alphanumeric or underscore charac-
ters, not contained in a comment or constant, preceded and
followed by a delimiter - the initial letter must always be

alphabetic.

identifier

letter [letter|digit|]...

Examples:

valid identifiers
X

SIMULA 67

AlS

MORGAN_PLUS U

APPLE-

invalid identifiers

END reserved for use as a keyword
SYMuBOL contains a blank

3C does not begin with a letter

Section: 2.4.2

System/ 360 Page:)
SIMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

(SHORT)INTEGER-constant

decimal-digits

The range of values is the set of whole numbers from 0 through
231—1 (= 2147483447). If the magnitude lies in the range 0
through 215-1 (= 32767), the constant is treated as a SHORT
INTEGER constant, if the magnitude lies in the range 215 through
231-1, it is treated as an INTEGER constant. If the magnitude

is equal to or exceeds 232, the number 1s interpreted as a REAL

constant.

Examples:
0 SHORT INTEGER
91 SHORT INTEGER

814728 INTEGER

Section: 2.4.2

Page: 9
System/ 360 STIMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

TEXT-constants have the form

"{ény sequence of members of the data character sef}"

CHARACTER-constants are represented by

'{any one member of the data character set}'
Examples:

valid CHARACTER-constants:
|X|
l&'
'LI'

e the character quote itself

invalid CHARACTER-constants:

1. 1

two data character set members
"Ag! blanks are significant in character

constants

If one wishes to represent a text quote inside a TEXT-
constant, it is represented by "" - two adjacent text quotes.
Notice that """" has length 1, """""" has length 2 etc.

Section: 2.5.1

System/360 , Fage: ’
S I M U'L A Level: 1
‘ Date: 1/4-1973
USERS GUIDE Originator: AL

Each variable declared in a type declaration has an initial
value (given in the table below). Thereafter the value of a
variable is the one last assigned to it, or if no assignment

has yet been made, the initial value.

Type Initial value Aséignable range
INTEGER 0 Whole number in the range
—231 through 231-1.
SHORT INTEGER 0 Whole number in the range
—215 through 215—1.
REAL 0.0 Number in the range °

i(0+1075 approx.) to "7

decimal places.

LONG REAL 0.0 Number in the range
i(0+1075 approx.) to ~16

decimal places.

BOOLEAN FALSE TRUE, FALSE.
CHARACTER CHAR(Q) CHAR(0), CHAR(1),
CHAR(255).
REF(CLASS- NONE NONE or any object of the
identifier)

qualifying class or included

in the qualifying class.

TLXT NOTEX'T NOTEXT or any string of
characters from the data
character set of length 0

through (215—20) characters.

Section: 2.5.4

Page: b
System/360
SIMULA - Level: 1
Date: 1/4-1973
USERS GUIDE: Originator: AL

function-declaration

REF(POINT) PROCEDURE ADD(Q); REF(POINT)Q;
IF Q =/= NONE THEN ADD :- NEW POINT(X+Q.X,Y+Q.Y)

REAL PROCEDURE NORM(A,N); REAL ARRAY A; INTEGER N;
BEGIN REAL T; INTEGER I;

FOR I := 1 STEP 1 UNTIL N DO -
T := T + A(I)#%2;

NORM := SQRT(T)
END ##%NORM### ‘

INTEGER PROCEDURE FACTORIAL(N); INTEGER N;
IF N < 0 THEN ERROR ELSE '
IF N < 2 THEN FACTORIAL
ELSE FACTORIAL

1 :
N#FACTORIAL(N-1)

A function returns a value of the type indicated in its dec-
laration, and may be used wherever a value of that type 1is
legal. (It may also be used as a statement in which case the

function value is ignored);
P :- R.ADD(S)
X := NORM(MATRIX, 10)

IF NORM (MATRIX, 10) & &-6 THEN
OUTTEXT ("ELEMENTSWALLMZERO")

Section: 2.5.4

System/ 360 Page: 13
SITMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

Call by name

Call by name is an optional transmission mode available for
parameters to procedures, but not to classes. It represents

a textual replacement in that the formal-parameter may be con-
sidered replaced throughout the PROCEDURE-body by the corres-

ponding actual-parameter.

Whereas call by value and call by reference operate on vari-
ables local to the PROCEDURE-body itself, call by name operates
on non-local quantities and can alter global quantities. It is
therefore especially useful for the controlled alteration of
several variables external to the PROCEDURE-body.

The following rules apply:

1) the type of a name parameter is that prescribed by the

corresponding formal specification.

2) if the type of the actual-parameter does not coincide with
that of the formal specification, then an evaluation of the
expression is followed by an assignment of the value or
reference obtained to a fictitious variable of the latter
type. This assignment is subject to the rules of section
2.7.2. The value or reference obtained by the evaluation

is the contents of the fictitious variable.

Section 2.7.2 defines the meaning of an assignment to a variable
which is a formal-parameter called by name, or is a subscripted
variable whose array identifier is a formal-parameter called by
name, if the type of the actual parameter does not coincide with

that of the formal specification.

System/ 360

Section: 2.5.Y4

Page: 15
STIMULA Level: 1

Date: 1/4-1973
USERS GUIDE Originator: AL

A snapshot at the procedure call is:

PROCEDURE SWAP

REAL P 4.0
REAL Q 5.7
SWAP(P,Q)

A

. . \§; .

PSC —H

REAL A \::::
REAL B
REAL X 0.0

No local copies are made.

Program Sequence Control
(PSC) references the current

statement

Every occurrence of A or B in the

PROCEDURE-body means a re-cvaluation of the actual-parameter.

Notice that the actual-parameters are evaluated in the context

of the procedure call.

The result of executing the call on SWAP is to set the value
of P to 5.7 and the value of Q to 4.0.

Section: 2.5.5

System/ 360 Fage: ’
STHUL A Levels 1
Date: 1/4-1973
USERS GUIDE Originator: AL

The available transmission modes for legal parameters to

classes are shown in the following table:
CLASS PARAMETERS
Parameter : Transmission
call by value call by reference
value-type
reference-type

TEXT
value-type ARRAY

x O O X U
O g o o X

reference-type ARRAY

D : default mode
O : optional
X : illegal

The transmission modes "call by value" and "call by reference"

are explained in section 2.5.4.

The discussicn of CLASS-declarations begins by considering two

selected examples of increasing scope.

Section: 2.5.5

Page: 5
System/ 360 ‘
SIMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

The expression
NEW A(C...)

creates an object of the class A (the order and number of the
actual-parameters must correspond with the order and number of
the formal-parameters) and commences execution of its actions.
The execution continues until the final END of the class body

is encountered, when the execution is terminated. However this
may be interrupted in four ways - by a GOTO-statement (which
leads out of the object), or by calls on the system procedures
"DETACH", "RESUME" or "CALL". A GOTO exit will leave the object
in the terminated state. "Detach" suspends the actions of the
class body and names it an independent component of the pro-

gram. Its actions may be continued later by a call on "resume".

The object is "attached" when entered on generation by

execution of NEW or when it is the subject of a call on CALL.

Section: 2.5.6

System/ 360 Page: !
STMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: GB

5.6 EXTERNAL DECLARATIONS

External declarations allow the inclusion in a program of
previously compiled procedures and classes. By judicious
use of this feature a programmer can build up a library

of building blocks on which to base future programs.

External FORTRAN and Assembly procedure declarations may

also be important for the following reasons:

1) efficiency. Minimal coding may be achieved in

critical regions of a program.

2) features of a machine which are hidden by SIMULA

may be accessed.

3) routines (already written) in other languages may

be incorporated into SIMULA programs.

Section: 2.5.6

Page: 2
System/ 360
STMULA Level: 1
Date: 1/4-1973
USERS GUIDE Orrigj_nator': GB

external-declaration

rFURTRAN)
|ASSEMBLY Eyp%] PROCEDURE
EXTERNAL | id-list
CLASS
L J

ExamEles

EXTERNAL ASSEMBLY INTEGER PROCEDURE BITS_ON
EXTERNAL REAL PROCEDURE MIN, MAX

EXTERNAL PROCEDURE READ, WRITE

EXTERNAL FORTRAN PROCEDURE FORMAT

EXTERNAL CLASS DRAUGHTING

Preparation of external procedures

In order to prepare external procedures written in SIMULA,
they should be compiled one at a time by compiling with

PARM = EXTERN or PARM = 'EXTERN = P'. Note that the syntax
of a separately compiled SIMULA procedure is identical with
that of a procedure declaration, i.e. the program does not
start with BEGIN! Separately compiled procedures are placed
in a user specified library (see "SIMULA Programmer's Guide

IBM System 360", section 2.4, p. 30 for examples).

An external procedure may be saved as an object module or as

a load module.

System/ 360

Section: 2.5.6

Page: 3
SIMULA Level: 1

Date: 1/4-1973
USERS GUIDE Originator: GB

Note the following restrictions:

1

2)

FORTRAN, ASSEMBLY procedures

Parameter checking is the responsibility of the writer of
the external procedure since it cannot be wholly done by
the compiler. In FORTRAN procedures, only FORTRAN para-

meters may be transmitted.

In ASSEMBLY procedures, only literals, simple or array
variables are allowed as actual parameters. Fof details
concerning parameter retrieval and other aspects relevant
to the writing of FORTRAN and ASSEMBLY procedures, consult

Programmer's Guide, Appendix G.

External procedures may not contain local classes and

object reference=-variables.

Section: 2.5.6

e m
System/360 Page:
SIMULA- Level: 1
Date: 1/4-1973
USERS GUIDE Originator: KB

Preparation of external classes

In order to prepare external classes, they should be compiled
one at a time by compiling with PARM = 'EXTERN = C'. Note
that the syntax of a separately compiled class is identical
to that of a class declaration. Separately compiled classes
are placed in a user specified source module library with DD-
name SYSPUNCH.

Note the following restriction:

A separately compiled class must not contain either COPY code,

or other external class declarations.

Use of externally compiled procedures and classes

Retrieving an externally compiled class is achieved by specify-
ing the library containing it as a data set with DDNAME SYSLIB
to the SIMULA compiler.

The retrieval of an externally compiled procedure is achieved
by specifying the library containing it as a data set con-

catenated with SYSLIB of the loader or linkage editor.

Section: 2.6.1

System/360 Page: 3
SITMULA Level: 1
Date: 1/4-1973

USERS GUIDE . Originator: AL

Let X be a simple object expression qualified by class C,

and A an attribute identifier.

The X.A is valid if X =/= NONE and class C has at least one
attribute identified by A. If there is only one attribute with
identifier A contained in class C or in its prefix chain, then
it is designated by X.A. If class C contains more than one
attribute with identifier A, then X.A designates the attribute

with identifier A at the innermost prefix level.

N.B. The main part of any class declaration can contain at

most one attribute with that identifier.

Examgle:

REF(Cl)Xl; REF(C2)X2; REF(C3)X3; REF(CH)XY

CLASS C1(A); REAL Aj;
BEGIN +vvvuvnnnnnn e END;

Cl CLASS C2;
BEGIN TEXT Ay ... END;

C2 CLASS C3;
BEGIN ot vevneneernnnenens END;

C3 CLASS Cu;
BEGIN BOOLEAN Aj +....... END;

X1 := X2 := X3 := X4 :-= NEW Cu(6.0);

Section: 2.6.2

System/ 360 Page: !
SIMULA Level: 1
Date: 1/4~1973
USERS GUIDE Originator: AL

6.2 FUNCTION DESIGNATORS

A function designator denotes the value obtained by evaluating
the associated procedure body when supplied with the associated

actual parameter list (if any).

function-designator

identifier ‘
[actual-parameter-list]

remote~identifier

actual-parameter-list

(actual-parameter|, actual-parameter]...)

actual-parameter

fexpression
ARRAY-identifier
< SWITCH-identifier 9
PROCEDURE-identifier
| LABEL-identifier

ExamEles:

ININT

INTEXT(20)
SIN(A+B)

H.FIRST
CURRENT.NEXTEV.SUC
POINT(5).MODULUS

System/ 360

SITMULA

USERS GUIDE

Section: 2.6.4

Page: 7
Level: 1
Date: 1/4-1973

Originator: AL

Two text values are equal if they are both empty or if they

are both instances of the same character sequence. Otherwise

they are unequal, and then a text value T ranks lower

than a text value U if one of the following conditions
is fulfilled.

1) T is empty

2) U is equal to T followed by one or more characters

3) If the first i-1 characters of T and U are the same,

and the ith character of T ranks lower than the ith

character of U.

Examples:

NOTEXT = ""

"0" < "9"
"ABCDE"="ABCDEF"
"+l2" -= "._.12"
"ABC" = "ABCu "

TRUE
TRUE
FALSE
TRUE
FALSE

Section: 2.7.1

Page: 2
System/ 360
SIMULA Level: 1
| Date: 1/4-1973
USERS GUIDE Originator: AL

When a block is prefixed, the identifiers declared in the
corresponding CLASS are made available. Nevertheless, an
identifier in the CLASS may be redefined in the main-block or

compound-statement.

The execution of a block is as follows:

step 1: 1if the block is prefixed then the actual parameters
, if any are evaluated.
2: 1if the declarations of the block contain array bounds
then these are evaluated. (They may make reference

to parameters of the prefix).

3: Execution of the statements of the block body begins
with the first statement of the prefix, if any, other-
wise with the first statement of the main block.

After execution of the block body (unless it is a
GOTO statement) a block exit occurs and the statement

textually following the entire block is executed.

A CLASS identifier possibly followed by an actual parameter

list can prefix a main-block or compound-statement. This re-
sults in concatenating the object of the stated class with

that main-block or compound-statement, which means that the capa-
bilities of the stated class and its including classes are avail-

able within that main-block or compound statement.

When an instance of a prefixed block is generated, the formal
parameters of the class are initialised as indicated by the
actual parameters of the block prefix. A virtual quantity is
identified by the quantity defined by a matching declaration in
the block head of the main-block or compound-statement, or by
the matching definition at the innermost prefix level of the
prefix sequence. The operation rule of the concatenated object

is defined by principles similar to those given in section 5.5.

Section: 2.7.2

System/ 360 Page: 6.1
SIMULA Level: 2
Date: 26/11-1975
USERS GUIDE Originator: PW
reference-assignment
{variable t- } object-expression
PROCEDURE-identifier :- .. TEXT-expression
Examples:
P.X[11 :- NONE

P :- Q :- THIS POINT.SUC
ADD :- NEW POINT

THIS LINE.P :- NONE

T :- BLANKS(80)

S :-= R :- T.SUB(1,20)

Consider the object-reference-assignment
V :- object-expression

Both the left part and the right part have a qualification.
Let these be Qz and Qr respectively - note that NONE is
here considered as having a universal qualification which
is inner to every other qualification. The situations that

can arise are illustrated in the context:

REF(CHAIN)C; CLASS CHAIN...... cenees

REF (MEMBER)M; CLASS MEMBER..........
REF(POINT)P; MEMBER CLASS POINT....;
REF(LINE)L; MEMBER CLASS LINE.....;
Case 1: QZ is equal or outer to Qr
e.g.
A) M :- NEW MEMBER;
B) M :~ NEW POINT; ¢
C) M :- P;
D) M :~ NONE;

System/ 360

Section: 2.7.2

Page: 6.2
SIMULA Level: 1

Date: 1/4~-1973
USERS GUIDE Originator: AL

Case 2:

The assignment is legal. In B), the attributes
of the referenced POINT-object may be accessed by

use of QUA as in
M QUA POINT.X

or by use of INSPECT as in either of
INSPECT M QUA POINT DO ... X ...
INSPECT M WHEN POINT DO ... X ...

Qq is inner to Qr

e.g.
A) P :- NEW MEMBER;
B) P :- M;

The assignment may be legal. A) is clearly not,
but B) is legal if M is currently referencing a
POINT object or an object of a class inner to
POINT, e.g. after

M :- NEW POINT...;

This must be checked at runtime.

In cases 1 and 2, the qualifications Qz and Qr are said to

be compatible. Notice that compatibility is decided at

compile time.

Case 3:

QZ and Qr are not compatible.

e.g.
A) P := NEW LINE.....;
B) P :- NEW CHAIN;
C) M :- C;

The assignment is illegal.

Section: 2.7.2

System/ 360 ' Page: 6.3
S I.M U L A Level: 2
Date: 26/11-1975
USERS GUIDE Originator: PW

Similar rules apply to the object-reference assignments
implicit in the passing of parameters (FP :- AP) and
assignments to the result variable in a function procedure
body.

Multiple assignments take the form
Vi PT Vo T eeel 1= Vooi- object-expression

17 2

and are equivalent to

A object expression,
v - v

n-1 n’
v - V.3

1 2°

The considerations above apply at each step.

The fact that an object-reference-assignment is always
checked for legality‘(mainly at compile time) has the
foilowing implication. For any object—reférence—variable
or indeed, object-expression whose value is V and with
qualification Qv’ the following is always true under

program execution:

(V == NONE) OR (V IN Q,)

Section: 2.7.2

System/360 Fage: °
S I M U L A Level: 1
' Date: 1/4-1973
USERS GUIDE Originator: AL
Examgle:

The program below prints out the first three verses of

"The Twelve Days of Christmas". The program logic is built
around a SWITCH.

BEGIN

SWITCH CASE := LINEl, LINE2, LINE3;
INTEGER VERSE;
TEXT ARRAY T(1:3);

T(1l) :- COPY("FIRST");
T(2) :- COPY("SECOND");
T(3) :- COPY("THIRD");

IF_WE_USE_FOR_HERE_THE LABELS_BECOME_INVISIBLE:

LINE3:
LINE2:
LINE1:

END

VERSE := VERSE + 1; ,
QUTTEXT("ONLTHEL"); OUTTEXT(T(VERSE));
OUTTEXT ("uDAYLOFLCHRISTMAS"); OUTIMAGE;
OUTTEXT("MYuTRUEWLOVEWSENTWLTOWME™) ; OUTIMAGE;
GOTO CASE(VERSE);
OUTTEXT("THREEuFRENCHuHENS"); OUTIMAGE;
OUTTEXT("TWOuTURTLEuDOVES,uAND"); OUTIMAGE;
OUTTEXT("AuPARTRIDGEuINuAuPEARuTREE"); OUTIMAGE;
EJECT(LINE + 2);
IF VERSE < 3 THEN

GOTO IF WE_USE_FOR_HERE_THE_LABELS_BECOME_INVISIBLE;

Section: 2.7.2

Page: 10
System/360
| SIMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL
DUMMY STATEMENTS
A dummy-statement executes no actions. Its main use is to

place a label before an END

dummy-statement

ExamEles:

IF X > 0 THEN ELSE X :=. =X;

BEGIN s e LAB : END;

Section: 2.7.2

System/360 Page: 16
| S I M‘U L A Level: 1
Date: 1/4-1973
USERS GUIDE - Originator: AL

0, B, 0 are different identifiers which are not used elsewhere
in the program. ¢ identifies a non-local simple variable of

the same type as AZ'

S

next for list element

2. Al STEP A2 UNTIL A3

C 1= A

19
o = Ay
o : IF c*(C—A3) > 0 THEN GOTO g3
S3
o = A
C = C + 03
GOTO a3

B : next for list element

3. V WHILE B

a : C 1= V3
IF =~ B THEN GOTO B3
S
GOTO a3

B : next for list element

Section: 2.7.2

System/ 360 Fage: .
| SIMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL
4. O
C :=- 0;
S

next for list element

0 WHILE B

C :=- 0,

IF 1 B THEN GOTO B;
S

GOTO aj

next for list element

Section: 2.7.2

v : 19
System/360 Page
SIMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

PROCEDURE STATEMENTS
A procedure-statement calls for the execution of the PROCEDURE-
body. Before execution, the formal-parameters of the procedure

are replaced by the actual-parameters.

PROCEDURE-statement

PROCEDURE-identifier [(expression

[éimple-object—expression]
[, expressionl...)]

simple~TEXT-expression.

ExamEles:

INTO(H)
OUTTEXT (" ###Q#x")
SYSIN.INIMAGE

The procedure statement must have the same number of actual
parameters in the same order as the formal-parameters of the

procedure heading.

Restrictions

1) An actual-parameter corresponding to a formal-.parameter
called by NAME which is assigned to within the PROCEDURE-

body must be a variable.

2) If the formal-parameter is an ARRAY (PROCEDURE), then the
number of dimensions (actual-parameters) used within the

PROCEDURE-body must correspond to the number of dimensions
(actual-parameters) of the actual ARRAY (PROCEDURE).

Section: 2.7.2

, 23
System/360 | Page
STMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

Connection statement

statement
INSPECT object-reference DO § [WHEN CLASS-identifier DO statement]...
[OTHERWISE statement]

ExamEles:

INSPECT SYSOUT DO
BEGIN OUTTEXT("TITLE");
OUTIMAGE

EJECT (LINE+10);
END;

INSPECT X WHEN A DO OUTTEXT("X IN A")
WHEN B DO OUTTEXT("X IN B")
OTHERWISE OUTTEXT("ERROR");

INSPECT X DO
INSPECT Y DO P := Q
OTHERWISE OUTTEXT("Y==NONE");

To avoid ambiguity, an OTHERWISE refers back to the nearest
INSPECT.

The remote accessing of objects of classes may be accomplished

by the dot notation or by connection. In most cases the methods
are interchangeable, but if the object contains a class attribute
at a certain level, then attributes at that level and levels

inner to it can only be accessed by connection.

Section: 3.1

System/ 360 Page: 10
S I M U L A Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

In addition to sequencing PROCEDURES, "DETACH" and "RESUME",
there is the PROCEDURE CALL which has one reference parameter

which'must be a reference to a detached object.

The execution of CALL(Y) from within a block X, will "attach"

the detached object Y to X and continue execution of the actions

of Y.

The detailed description of program sequencing given in the
"SIMULA 67 Common Base Language'" is not repeated here. Further

enquires are directed to that document §9.

Section: 3.2

System/360v Page: L2
STMULA Level: 1
Date: 1/4-1973
USERS GUIDE ' Originator: AL

CLASS HAND;
BEGIN PROCEDURE PLACE(C); REF(CARD)C;
BEGIN REF(HEAD)S; REF(CARD)X;
S := SUIT(C.COLOUR);
IF 71 S.EMPTY THEN
BEGIN X :- S.FIRST QUA CARD;
WHILE X =/= NONE DO
BEGIN IF X.RANK > C.RANK THEN
BEGIN C.PRECEDE(X);
GOTO L
END;
X 1= X.SUC;
END;
END;
COMMENT ###WE ENTER HERE IF S IS EMPTY OR
IF C.RANK IS THE HIGHEST MET
SO FAR###
C.INTO(S);
Li: END #%xPLACE##*%

REF(HEAD) ARRAY SUIT(1l:4);

SUIT(1) :- NEW HEAD;
SUIT(2) :- NEW HEAD;
SUIT(3) :- NEW HEAD;
SUIT(4) :- NEW HEAD;

END ###HAND### ;

Section: 3.3
P : 2
System/ 360 age
SIMUL A Level: 1
Date: 1/4-1973
USERS GUIDE ' Originator: AL

actions are executed. When the active phase is over, that PROCESS
may be rescheduled for a later active phase (for example, by
REACTIVATE or HOLD) or remcved from the timing tree (by PASSIVATE
or WAIT). It is apparent that RESUME is too primitive for this
purpose as it involves rescheduling or removing EVENT NOTICES as

well as switching the PSC from one PROCESS object to another.

However RESUME and DETACH do form the basis for the scheduling
procedures. To prevent the user from destroying.system security,
event notices may not be explicitly referenced by the user - he
must.use the system procesiures for scheduling or rescheduling.

In addition, it is strongly recommended that explicit use of
"DETACH", "RESUME" and "CALL" be avoided within a SIMULATION
block.

There is one special PROCESS object which plays a key role in

any SIMULATION - one referenced by MAIN. Whenever MAIN becomes
CURRENT, it causes the actions of the SIMULATION block itself to
be continved. The corresponding event notice can then be re-
schedus.ed (typically by a call on HOLD) and then the action swit-
ches from the SIMULATION block to the new CURRENT. Thus the
SIMULATION block is itself treated as a program component during
the SIMULATION. |

Section: 3.3

System/ 360 Fage: !
SIMULA Level: 2
Date: 26/11-1975
USERS GUIDE Originator: PW

PROCEDURE CANCEL(X); REF(PROCESS)Xj.esusss
CANCEL(P) where P is a reference to a
PROCESS object will delete the corresponding
event notice if any. If P is currently
‘active or suspended, it thus becomes passive.
If P is a reference to a passive or ter-
minated PROCESS object or NONE, CANCEL(P)
has no effect. Thus CANCEL(CURRENT) is
equivalent to PASSIVATE.

PROCEDURE ACTIVATE

For user convenience, calls on the procedure ACTIVATE are

written in terms of the corresponding activation-statements.

activation-statement

ACTIVATE

PROCESS-expressionl [

{AT |DELAY} time [PRIOR]
{BEFORE |AFTER} PROCESS-expression2

REACTIVATE

Let X be. the wvalue of PROCESS-expressionl. If the activator
ACTIVATE is used, then the activation-statement will have no
effect (other than evaluating X) unless X is passive. If the
activator REACTIVATE is used, then X may be active, suspended,
or passive (in which latter case, the activation-statement acts

as an ACTIVATE statement).

The type of scheduling is determined by the scheduling clause.

Section: 3.3

: 16
System/ 360 Fage
STMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

A complete description of the program now follows:

BEGIN INTEGER POPULATION, LENGTH, CONTACTS, INCUBATION,
UL, U2, U3, U4, UNINFECTED;
REAL PRINF, PROBMASS, SIMPERIOD;
COMMENT ###THE RANDOM STREAM NUMBERS ARE READ IN###

Ul := ININT; U2 := ININT;
U3 := ININT; U4 := ININT;

UNINFECTED := POPULATION := ININT;
INCUBATION := ININT; LENGTH := ININT;
CONTACTS := ININT;

SIMPERIOD := INREAL;

PRINF := INREAL; PROBMASS := INREAL;

SIMULATION BEGIN REAL ARRAY PROBTREAT(1:LENGTH);
PROCESS CLASS SICKP;
"BEGIN INTEGER DAY;
BOOLEAN SYMPTOMS;
REF (HEAD)ENV;
PROCEDURE INFECT(N); INTEGER N;
BEGIN INTEGER I;
FOR J := 1 STEP 1 UNTIL N DO
IF DRAW(PRINF#UNINFECTED/
POPULATION,U3) THEN
BEGIN NEW SICKP.INTO(ENV);
ACTIVATE ENV.LAST;
END;
END ###INFECT##%

Section: 3.4

» : 4
System/ 360 Page
SIMULA Level: 7
Date: 26/11-1975
USERS GUIDE Originator: py
After S.PUTCHAR('6');

S.PUTCHAR('7")

the snapshot is

T.—__ellss.-_;[i_liré;
se——5 [3] 2] J

Note that the value of T has been changed. The CP of S is

now out of range. A further call

S.PUTCHAR'
or S.GETCHAR

will result in a run time error. To provide a check, a BOOLEAN
PROCEDURE MORE is provided which returns FALSE if the CP is out
of range and TRUE otherwise. Currently,

T.MORE = TRUE S.MORE = FALSE
Other useful system defined procedures are:

LENGTH which returns‘the length of the currently
referenced value
(T.LENGTH = 6
S.LENGTH = 2)

POS Awhich returns the value of the CP
(T.POS = 3
S.POS = 3)

Section: 3.4
: 9
System/ 360 ‘ Page
STMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

CHARACTER PROCEDURE GETCHAR;

The value of X.GETCHAR is a copy of the currently accessible
CHARACTER of X provided X.MORE is TRUE. In addition, the posi-
tion indicator of X is then increased by one. A run time error
results if X.MORE is FALSE.

PROCEDURE PUTCHAR(C); CHARACTER C;

The effect of X.PUTCHAR(C) is to replace the currently accessible
CHARACTER of X by the value of C provided that X.MORE is TRUE.
In addition the position indicator of X is then increased by

one. If X.MORE is FALSE, a run time error results.

ExamEle:

The PROCEDURE COMPRESS rearranges the CHARACTERS of the TEXT
object referenced by the actual pardmeter by collecting non~
blank CHARACTERS in the leftmost part of the TEXT object and
filling in the remainder, if any, with blanks. Since the para-
meter is called by reference (and not by name), its position

indicator is unaltered.

PROCEDURE COMPRESS(T); TEXT T;
BEGIN TEXT Uj; CHARACTER C;
T.SETPOS(l); U := T;
MOVELEFT: WHILE U.MORE DO
BEGIN C := U.GETCHAR;
IF C == 'u' THEN T.PUTCHAR(C);
END;

COMMENT ###WE NOW FILL IN THE RIGHT WITH
BLANKS### ;

T.SUB(T.POS,T.LENGTH-T.POS+1) := NOTEXT;
END ###COMPRESS###

Section: 3.4

. 13
System/ 360 Page
STMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

b) TEXT-value-assignment

Consider the value assignment
T := Py

let the length of T be L1, and the length of the right part

be a TEXT value of length Lr. . There are three cases to con-

sider:

L1 = Lr: the character contents of the right part
TEXT are copied to the left part TEXT

Ll > Lr: the character contents of the left part
are copied into the leftmost Lr characters
of the left part TEXT, whose remaining
L1-Lr CHARACTERS are filled with blanks.

L1 < Lr: a run time error results.

After T := COPY("EIGHTWCHARS");

T := "WRONG:11"; '
then T = "WRONG:1luuw"
Note that

T := NOTEXT;

would set all the character positions of T to blanks.
In a multiple TEXT value assignment

Tl := T2 := TN := Pj;
then

TJ.LENGTH >= TJ+1.LENGTH
for Jd = 1,2,...,N-1

Section: 3.4

System/360 Page: Lo
STMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

De-editing prccedures

A de-editing procedure operating on a given TEXT reference X

operates in the following way:

1) the longest numeric item of the given form is located,

contained within X and containing the first character of X.

If such an item can be found, a run time error results.

2) ‘the numeric item is interpreted as a number. If it is
outside the accepted range (see PART 2, section 5.1

a run time error results.

3) the position indicator of X is made one greater than the

last character of the numeric item.

N.B. Unless otherwise stated, the de-editing procedures are

illustrated in the context:

T :- COPY("1234.5+7.3&4AB");
S :- T.SUB(7,6);
R :- T.SUB(5,2);

INTEGER PROCEDURE GETINT;

Locates an integer-item.

"

T.GETINT 1234
S.GETINT 7

R.GETINT causes a run time errcr

Section: 3.4

System/ 360 Page: L
SIMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

Editing procedures

Editing procedures in a given text reference X convert arith-
metic values to numeric items. After an editing operation,

the numeric item obtained is right adjusted in the TEXT X pre-
ceded by padding blanks. The final value of the position indi-
cator is X.LENGTH+1.

A positive number is edited with no sign. If X == NOTEXT then
a run time error results, otherwise if X is too short to con-
tain the numeric item, an edit overflow is caused (X is filled
with asterisks) and a warning message is given at the end of

program execution.

Let T = BLANKS(10);

PROCEDURE PUTINT(I); INTEGER I;

T.PUTINT(VAL) converts the value of the parameter to an integer-

item of +the designated value.

T.PUTINT(-37) wuuLuws— 37
T.PUTINT(118.8) wuuuaal 19

PROCEDURE PUTFIX(R,N); REAL R; INTEGER N;

T.PUTFIX(VAL,M) results in an integer-item of M=0, or a real-
item (with no exponent) if M>1 with M digits aiter the decimal
point. It designates a number equal in value to VAL rounded

to M decimal places. A run time error results if M<O0.

T.PUTFIX(18,0) wuuuuual 8
T.PUTFIX(=-1375.4,3) w-1375.400

Section: 3.5
- o I
System/ 360 Fage
S I MU L A Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

The PROCEDURES OPEN and CLOSE, which are specified as VIRTUAL

but have no matching declaration at the "file" level, complete
the definition of CLASS file. The matching PROCEDURES declared
in the subclasses of "file" conform to the patterns below with
possible minor variations depending upon the subclass. The vari-

ations are listed in the appropriate following sub-sections.
The PROCEDURE outlines are:

PROCEDURE OPEN(BUF); TEXT BUF;

BEGIN IF "open" THEN ERROR;
IMAGE :- BUF;

END

PROCEDURE CLOSE;

BEGIN vevunannn.
IMAGE :- NOTEXT;

END

No information can be processed through a "file" object until
it has not only been generated but also opened. This can only
be achieved by a call on the PROCEDURE OPEN whose actual para-
meter is assigned to IMAGE and acts as the buffer. A call on

OPEN when a "file" is already open gives a run time error.

The PROCEDURE CLOSE closes a file and releases the buffer (by
the assignment IMAGE :- NOTEXT). No information may be trans-
mitted through a closed "file" object, but it may be opened
again by a further call on OPEN.

Section: 3.5
: 6
System/360 Page :
SIMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

than IMAGE, it is left adjusted and the remainder of IMAGE is
filled with blanks. Finally the position indicator of IMAGE

is set to 1. When the last record has been read in, and INIMAGE
is called again, a call on ENDFILE will return TRUE. Any fur-
ther call on INIMAGE, INCHAR, INTEXT, ININT, INREAL or INFRAC

will result in a run time error.

BOOLEAN PROCEDURE LASTITEM;

returns FALSE only if the external file contains more infor-
mation {non-blank CHARACTERS). It scans past all blank CHARACTERS
(calling INIMAGE if need be). If LASTITEM returns FALSE then

the currently accessible CHARACTER of IMAGE is the first non-
blank CHARACTER. If ENDFILE returns TRUE, a call on LASTITEM

also returns TRUE.

CHARACTER PROCEDURE INCHAR;

gives access to the next available CHARACTER and scans past it.
If IMAGE.MORE is FALSE, then INIMAGE is called once and the value
of the call is the first CHARACTER of the new image. INCHAR
gives a run time error if an attempt is made to read past the

last record in the file.

TEXT PROCEDURE INTEXT(W); INTEGER W;

INTEXT(M) creates a copy of the next M CHARACTERS (which may be
spread over several records) and returns a reference to this copy.
If M<0orM > 215—20 then a run time errc . 3ults. A run

time error will also result if the file does not contain M more

CHARACTERS, i.e. an attempt is made to read past the last record.

The remaining PROCEDURES treat the file as a continuous stream
of records. They scan past any number of blanks (calling INIMAGE
if need be) and then de-edit a numeric item lying in one image.

This is done by calling LASTITEM (which scans past the blanks)

Section: 3.5

: 9
System/360 Page:
STMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

PROCEDURE OUTTEXT(T); VALUE T; TEXT T;

A copy of the CHARACTER sequence represented by the actual
parameter is edited into IMAGE from the current position.

If the remaining length of IMAGE is insufficient, OUTIMAGE
is called and the editing process proceeds. Thus the TEXT

value may, be split over several external records.

PROCEDURE OUTCHAR(C); CHARACTER C;

Qutputs the value of C into the current position of IMAGE
(if MORE = FALSE, then OUTIMAGE is called first). In either

case, the current position indicator is then incremented.

The remaining PROCEDURES are all based upon the PUT-PROCEDURES
local to TEXTs. The corresponding OUT-PROCEDURES are augmented

by an extra parameter W which specifies the field within.

W characters

IMAGE °-———>//////// i

o\ ,'

portion FIELD
of IMAGE
already filled

Final position of current’
position indicator

The editing PROCEDURE commences by establishing a temporary
TEXT reference (FIELD) to the next sequence of W CHARACTERS
lying in one IMAGE. If the current IMAGE has not enough space
left, OUTIMAGE is called. Then the value is edited by calling
FIELD."PUT###" where "PUT###" is the PUT-PROCEDURE corres-
ponding to the OUT-PROCEDURE. Finally the current position
indicator is increased by W to reference past FIELD - past the
just-edited field.

Section: 3.5

System/ 360 Page: L
SITMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

PROCEDURE EJECT(N); INTEGER N;

This PROCEDURE skips to a certain line on the page - (it avoids

calling OUTIMAGE several times). EJECT(L) will position to line
L on this page if this is further down the current page (if

L > LINE), or else skip to LINE L of the next page if L <= LINE.

A run time error occurs if L <=0. If L > LINESPERPAGE, EJECT(L)
is eduivalent to EJECT(1).

INTEGER PROCEDURE LINE;

This PROCEDURE returns the INTEGER value of the line number
which indicates the next line to be printed. Thus EJECT(LINE+3)
will skip three lines and not alter spacing. After each call on

OUTIMAGE, the line number is incremented by the current spacing.

PROCEDURE QUTIMAGE;

This PROCEDURE acts like the OUTIMAGE of QUTFILE but in
addition increments the line number by spacing, and will
position to the top of the next page if the current page is
filled.

Section: 3.5

System/ 360 ‘Page: 20
SIMULA Level: 1
Date: 1/4-1973
USERS GUIDE Originator: AL

CLASS BASICIO

The system defined file facilities are grouped together in
the CLASS BASICIO whose skeleton reads:

CLASS BASICIO(linelength); INTEGER linelength;
BEGIN CLASS file..'.ll'............';
file CLASS INFILE..eveeeeanoeah

file CLASS OUTFILE.. . seesssnesss}
file CLASS DIRECTFILE...ceesss}
file CLASS PRINTFILE.. eeecesas
REF(INFILE)sysin;

REF(PRINTFILE)sysout;
REF(INFILE) PROCEDURE SYSIN; SYSIN :- sysin;
REF(PRINTFILE) PROCEDURE SYSOUT; SYSOUT :- sysouty
sysin :- NEW INFILE("SYSIN"); |
sysin.OPEN(BLANKS(80));
sysout :- NEW PRINTFILE("SYSOUT");
sysout.OPEN(BLANKS(linelength));
INNER;
sysin.CLOSE; sysout.CLOSEj;

END ###BASTCIO##*

Section: 3.5

System/360 Page: 22
SIMULA Level: 1
Date: 1/4-1973

USERS GUIDE Originator: AL

When the actions of the user defined program are exhausted,
control returns to the prefix level of the BASICIO object and
continues after the INNER. The following three statements

close the three system generéted’files.

The inspect statements enclosing the program allow the user

to write ININT, INIMAGE,..... instead of SYSIN.ININT,

SYSIN.IMAGE and OUTREAL, OUTIMAGE,.... instead of SYSOUT.OUTREAL,
SYSOUT.QUTIMAGE. There are attribute name clashes

OPEN which should never be used for
CLOSE} SYSIN or SYSOUT

IMAGE

SETPOS

POS

MORE

LENGTH

When these occur they are naturally bound to SYSOUT and the
corresponding attributes of SYSIN may be obtained by writing
SYSIN.SETPOS, SYSIN.IMAGE etc. Alternatively, an 1nput section

may be written as

INSPECT SYSIN DO

BEGIN
input - in this block occurrences IMAGE, SETPOS,
POS, MORE and LENGTH are bound to SYSIN

END;

Section: B
: 2
System/ 360 Fage
STIMULA Leveli 1
Date: 1/4-1973
USERS GUIDE Originator: AL

Arithmetic functions

Certain identifiers, expressed as procedures are defined by

the Simula system for standard arithmetic functions.

ABS(E) modulus (absolute value) of E

ARCCOS(E) return the principal values of the

ARCSIN(E) arc-cosine, arc-sine, arc-tangent of

ARCTAN(E) E (E is measured in radians)

COS(E)

SIN(E) return the cosine, sine, tangent of

TANCE) E (E is measured in radians)

COSH(E) return the hyperbolic cosine, hyperbolic

SINH(E) sine, hyperbolic tangent of E (E is

TANH(E) measured in radians)

EXP(E) exponential function of E (eE)

LN(E) natural logarithm of E (logeE, or 1n E).
If E <= 0, a run time error results.

SQRT(E) returns the square root of E if E >= 0.

If E < 0, a run time error results.

The above 13 functions operate on arithmetic arguments. If the
type of E is [SHORT]INTEGER or REAL, then the function value is
of type REAL. If the type of E is LONG REAL, then the function

value is of type LONG REAL.

Section: B

System/360 Page:)
v S I M U L A Level: 1
| Date: 1/4-1973
USERS GUIDE Originator: AL

MOD(M,N) " M modulo N, that is
M - ((M//N)#N)

e.g. MOD (7,3) is 1
MOD (-u48,5) is 2

The function operatés on [SHORT]INTEGER arguments,
LONG REAL arguments being rounded. The result is
[SHORT] INTEGER.

Section: B

System/360 : Page: 10
S I M U L A Level: 1
Date: 1/4~1973

USERS GUIDE Originator: AL

Utility procedures

PROCEDURE HISTO(A,B,C,D);{IggiiER}ARRAY A,B;
INTEGER
{REAL }C_’Q_’_

A call on HISTO updates a histogram defined by the one dimen-
sional ARRAYS (INTEGER or REAL) A,B according to observation C

with weight D. A(I) is incremented by D, where I is the smallest
INTEGER such that C <= B(I). It is assumed that the length of A

is one greater than the length of B. The last element of A corres-
ponds to those observations which are greater than all the

elements of B.

PROCEDURE LOWTEN(C); CHARACTER C;

Without use of LOWTEN, the CHARACTER 'E' represents the ex-
ponent sign in any numeric item to be edited or de-edited.

A call on "LOWTEN" with actual parameter "EXPSIGN" will replace
'E' by the value of EXPSIGN in future edifing and de-editing.

System/ 360

Section: C

Page: b
STMULA CLevel: 1

Date: 1/4-1973
USERS GUIDE Originator: AL

INTEGER
BOOLEAN
REAL
INTEGER
REAL
REAL
REAL
INTEGER
INTEGER
REAL

SEQUENCING PROCEDURES

PROCEDURE CALL(X); REF(anyclass)X;
PROCEDURE DETACH;
PROCEDURE RESUME(Y); REF(anyclass)X;

RANDOM

DRAWING PROCEDURES

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

DISCRETE(A,U); NAME U; ARRAY A; INTEGER Uj
DRAW(A,U); NAME U; REAL A; INTEGER U;
ERLANG(4,B,U); NAME U; REAL A,B; INTEGER U;
HISTD(A,U); NAME U; ARRAY A; INTEGER U;
LINEAR(A,B,U); NAME Uj; ARRAY A,B; INTEGER U;
NEGEXP(A,U); NAME U; REAL A; INTEGER Uj
NORMAL(A,B,U); NAME U; REAL A,B; INTEGER Uj
POISSON(A,U); NAME U; REAL A; INTEGER Uj
RANDINT(A,B,U); NAME U; INTEGER A,B,U;
UNIFORM(A,B,U); NAME U; REAL A,B; INTEGER U;

UTILITY PROCEDURES

PROCEDURE
PROCEDURE

HISTO(A,B,C,D); ARRAY A,B; REAL C,D;
LOWTEN(C); CHARACTER C;

