Section: 2.5
System/360 ' SIMULA , Page: 1

Level: 0

Date: 5/4-1971

USERS GUIDE
Originator: GB

5. DECLARATIONS

Declarations introduce a measure of security into the language
by associating identifiers with variables, arrays, sw1tches,

procedures and classes used in the programs.

A declaration determines the type and structure of a quantity.
Declarations must appear in a block head, and upon exit from
that block (unless it is the outermost block of a class body),

they lose their significance.

declaration

type-declaration
ARRAY-declaration
SWITCH-declaration
< PROCEDURE—declarationF
| CLASS-declaration

EXTERNAL-declaration
- J

Common to each of the succeeding sections, which discuss these

declarations, is the definition of an identifier-list.

Section: 2.5
System/360 SIMULA ‘ Page: 2

Level: 0

Date: 5/4-1971

USERS GUIDE .
Originator: GB

identifier-1ist

identifier [, identifier]...

in which the identifiers must all be different.

Examples:
valid AXOLOTL
A, B, MARY, B 1k
invalid A B no separating comma
A, END, Q END is a key word and is
not allowed as an identifier.
B1,B2, Bl the same identifier appears
twice

BIORTHOGONAL, BIORTHOGONALISATION
the identifiers are not
distinct (only the first
twelve characters are

significant).

Section: 2.5.1

System/360 S [M u L A Page: 1
Level: 0 _
Date: 5/4-1971

USERS GUIDE .
Originator: GB

5.1 TYPE DECLARATIONS
Type declarations associate each identifier in the associated
identifier list with a variable of a given type. This restricts

the range of values that may be assigned to that variable.

type-declaration

r'
[LONGIREAL

[SHORT]INTEGER
CHARACTER >
BOOLEAN

REF(CLASS~identifier)
ETXT y

identifier-list

A

Exalees:

valid: value-type REAL R1, R2
LONG REAL P1
INTEGER I, J, K
SHORT INTEGER SH1
CHARACTER A, B, C, D
BOOLEAN Bl, B2, B3

reference-type REF(POINT) P, Q
TEXT MY_STRING, YOUR_STRING

invalid: SHORT REAL ONE no such type
REF LINE_1, LINE_ 2 no such type - the qualification

is omitted.

Section: 2.5.1

System/360 SIMU L A APage:)
Level: 0
USERS GUIDE . -~ - Date: 5/4-1971
Originator:GB

INTEGER and SHORT INTEGER variables may only assume whole

numbers.
REAL and LONG REAL variables mayvonly assume numbers.

N.B. An arithmetic expression of any arithmetic type (SHORT
INTEGER, INTEGER, REAL, LONG REAL) may be assignéd to an arith-
metic variable. If the types do not correspond, the expression
is first converted to the type of the variable and then trans-
ferred, subject to its being in range. If it is not in range,

then a run time error will result.
BOOLEAN variables may only assume the values TRUE and FALSE.

CHARACTER variables may only assume values from the data

character set.

TEXT variables may only assume strings of characters from the

data character set or NOTEXT.

REF variables may only asSume the value NONE or references to

objects belonging to their qualifying class or its subclasses.

Section: 2.5.1

System/360d S I M u L A Page: 3
Level: 0
Date: 5/4-1971

USERS GUIDE ..
Originator: GB

BEach variable declared in a type declaration has an initial
value (given in the table below). Thereafter the value of a
variable is the one last assigned to it, or if no assignment

has yet been made, the initial value.
Type Initial vaiue ‘ Assignable range

INTEGER 0 Whole number in the range

—231 through 231—1.

SHORT INTEGER 0 Whole number in the range

—o1d through 27 5—1 .

REAL 0.0 Number in the range }
;t(0+1075 approx.) to 7

decimal places.

LONG REAL 0.0 Number in the range
:t(0—>1075 approx.) to 16

decimal places.

BOOLEAN FALSE TRUE, FALSE.
CHARACTER CHAR(OQ) CHAR(O0), CHAR(1), ...
CHAR(255).
REF(CLASS- NONE NONE or any object of the
identifier)

qualifying class or included

in the qualifying class.

TEXT NOTEXT NOTEXT or any string of
characters from the data
character set of length 0
~ through (215—20) characters.

Section: 2.5.2

System/360 SIMULA Page: 1
Level: 0
Date: 5/4-1971

USERS GUIDE
' Originator:GB

5.2 ARRAY DECLARATIONS

An array is a structure of many components (subscripted vari-
ables) all of the same type. Each component has the same.iden—
tifier (the array identifier), and they are distinguished one
from another by subscripts. Arrays invite the user to group

like data under one identifier.

Arrays are declared with a certain shape. They can have 1
through 8 dimensions (which is the number of subscripts neces-
sary to specify a certain component), and each dimension has a

fixed range specified by giving an upper and lower bound.

Pictorial representations of one, two and three dimensional

arrays are now given.

Section: 2.5.2
System/360 SIMULA Page: 2
Level: 0
Date: 5/4-1971
Originator:GB

USERS GUIDE

One dimensional array

INTEGER ARRAY NUMBER (4:9);

NUMBER(4)
NUMBER(5)
NUMBER(6)
NUMBER(7)
NUMBER(8)
NUMBER(9)

Dimensions 1:

i
9
Declares 6 subscripted variables each of type INTEGER and

Lower subscript bound

Upper subscript bound

initialised to 0.

Find the sum of the components of the array NUMBER.
SUM := 03

FOR I := 4 STEP 1 UNTIL 8 DO
SUM := SUM + NUMBER(I);

System/360

SIMULA

USERS GUIDE

Section:
Page:
Level:
Date:

2.5.2
3
0

5/4-1971

Originator: GB

Two dimensional array

REF(POINT) ARRAY A(0:3, 2:4);

ACO, 2) ACO, 3) ACO, 4)
ACl, 2) ACl, 3) ACl, W)
AC2, 2) AC2, 3) AC2, 4)
AC3, 2) A(3, 3) A(3, 1)

Dimensions 2:

Lower subscript bound
Upper subscript bound
Lower subscript bound

Upper subscript bound

Declares 12 subscripted

and each initialised to NONE.

Example:

variables each of type REF(POINT)

Scan the array and count how many subscripted variables are

currently referencing NONE.

COUNT
FOR I
FOR J :=

03

0 STEP 1 UNTIL 3 DO
2 STEP 1 UNTIL 4 DO
IF ACI, J) == NONE

THEN COUNT :=

COUNT + 1;

System/360

SIMULA

USERS GUIDE -

Section:
Page:
Level:
Date:

2.5.2

.

0
5/4-1971

Originator: GB

Three dimensional array

BOOLEAN ARRAY B(0:2,

0:3, -1:0);

z4/’13(0,0,0) ////ECO,1,0> ////,B(o,z,o) ////5(0,3,0)

B(0,0,-1) B(0,1,-1) B(0,2,-1) B(0,3,-1)
B(1,0,~1) B(1,1,-1) B(1,2,-1) B(1,3,-1)
B(2,0,-1) B(2,1,-1) B(2,2,-1) B(2,3,-1)

(Each component

Dimensions 3:

Lower
Upper
Lower
Upper
Lower

Upper

subscript
subscript
subscript
subscript
subscript

subscript

is represented by a cube).

bound
bound
bound
bound
bound
bound

1 =0
1 =2
2 =0
2 = 3
3 = -1
3 =0

AN

Scan through the array and set the values of each subscripted
variable to TRUE.

FOR J

FOR K :=
B(I,J,K) := TRUE;

FOR I := 0 STEP 1 UNTIL 2 DO
:= 0 STEP 1 UNTIL 3 DO
-1 STEP 1 UNTIL 0 DO

Section: 2.5.2

System/360 SITMULA ‘ Page: 5
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator:GB

ARRAY~-declaration

[type]l ARRAY ARRAY-segment [,ARRAY-segment]...

ARRAY-segment

identifier-list (lower-bound:upper-bound

[,lower—bound:upper—bound]...)

Examples:
ARRAY-segment A(C1:10)

B,C(1:15, O:N##*2)
ARRAY-declaration ARRAY ALFA (0:N)

REF(LINE) ARRAY L,M(0:P.X)
TEXT ARRAY R,S(1:5), T(1:4,ININT:IF X=0
THEN 10 ELSE 100)

Each identifier in an array declaration is associated with an
array of a given type (if no type is given, the type is taken to
be REAL). To enable arrays of the same type, but with different
shapes (number of dimensions and subscript ranges) to be declared
in the same place, an array declaration contains one or more
ARRAY-segments which are identifier-lists followed by their common
shape. The number of dimensions 1is the number of upper-bound
lower-bound pairs and the range of each subscript is specified

directly by the upper-bound/lower-bound pairs taken in order.

Note that although the lower- and upper-bounds may be arith-
metic expressions their value is the rounded integer as evalu-
ated on entry to the block; To be valid, the value of each
lower bound must be less than or equal to the value of its asso-
ciated upper bound. Neither bound may refer to a quantity de-
clared in the same block head. The value of each subscripted

variable is initialised according to the type of the array.

Section: 2.5.3

System/360 SITMULA | Page: 1
Level: 0
Date: 5/4-1971
Originator: GB

USERS GUIDE

5.3 SWITCH DECLARATIONS

A switch is declared with a list of designational-expressions
which are accessed by an index. The length of the 1list, N,
gives the number of switch elements. The value of each element
is the current value of the designational-expression (a label

to a statement, or another switch value).

SWITCH-declaration

SWITCH SWITCH-identifier := designational-expression

[,designational-expressionl]...

Examples:

SWITCH SW := L1, L2, T(N), M1l
SWITCH T := M1, IF N<O THEN L1 ELSE L3, Ml

A SWITCH declaration contains a list of designational ex-
pressions each of which is given a positive index (starting
from 1) by counting the items in the list from left to right.
The value of the switch-designator (see section 6.6) corres-
ponding to a given index is the current value of the desig-
national expression having the index in the corresponding list.
(An expression in a switch list is re-evaluated every time it

is referred to).

Section: 2.5.4

System/360 S I M u L A . Page: 1

Level: 0
: 5/4-1971
USERS GUIDE . Date
Originator:GB

5.4 PROCEDURE DECLARATION

A procedure declaratiocn defines an action cluster and gives

it a formal name. The action cluster is the body of the
PROCEDIRE. To increase the generality of the concept, there
are facilities for transmitting parameters and returning a
function value at run time. Thus a procedure is able to inter-
act with its calling environment by bindings established by

the calling mechanism.
By means of the procedure concept, special instances of dec-
lared action clusters become meaningful units witnin the SIMULA

program.

PROCEDURE~-declaration

{proper-procedure—declaration
function-declaration

proper-procedure-ceclaration

PROCEDURE PROCEDURE-heading PRCCEDURE-body

furiction-declaration
type’PROCEDURE PROCEDURE-heading PROCEDURE-body

PROCLEDURE-heading

5
134 -7 1fFier
PROCEDURE-identifler formal-parameter-part mode-part spec-part

Section: 2.5.4
System/360 SITMULA Page: 2

Level: 0

Date: 5/4-1971

Originator: GB

USERS GUIDE

formal-parameter-part

(identifier-1ist);

mode-part

{YALUE identifier-1istj)
NAME identifier-list;f...

spec-part

4 = . =
s
type
[typel ARRAY

JJ TROCEDURE identifier-list; & ...
type PROCEDURE
LABEL
SWITCH
S J J

.

PROCEDURE-body

statement

: Section: 2.5.4
System/360 SIMULA Page: 3
Level: 0
- Date: 5/4-1971

USERS GUIDE
Originator:GB

ExamEles:

proper-procedure-declaration

PROCEDURE SWAP(A,B); NAME A, B;

REAL A, Bj;
BEGIN REAL X;
X 1= Ay
A := B; B := X35

END ##%SWAP##%

PROCEDURE OUTCOLUMN(A,N); REAL ARRAY A; INTEGER Nj
BEGIN INTEGER J3; :
FOR J := 1 STEP 1 UNTIL N DO
BEGIN OUTFIX (A(J), 5, 12);
OUTIMAGE;
END;
END ##%%QUTCOLUMN###

PROCEDURE TREETRAVERSE(N); REF(NODE)N;

INSPECT N DO
BEGIN TREETRAVERSE(LEFTBRANCH);

DUMP;
TREETRAVERSE (RIGHTBRANCH)
END ###RECURSIVE TRAVERSE##%
A proper-procedure is used as a statement in its own right.
INIMAGE

OUTTEXT ("PROPER-PROCEDURE")

IF B THEN SWAP(TEMP1,TEMP2)

Section: 2.,5.4

System/360 S I M U L A Page: ' i
Level: 0
Date: 5/4-1971

USERS GUIDE .
Originator: GB

function-declaration

REF(POINT) PROCEDURE ADD(Q); REF(POINT)Q;
IF Q =/= NONE THEN ADD := NEW POINT(X+Q.X,Y+Q.Y)

REAL PROCEDURE NORM(A,N); REAL ARRAY A; INTEGER N;
BEGIN REAL T; INTEGER I;
FOR I := 1 STEP 1 UNTIL N DO
T := T + A(I)#%2;
NORM := SQRT(Tj
END ##3%NORM#*#*#*

INTEGER PROCEDURE FACTORIAL(N); INTEGER Nj; .
IF N < 0 THEN ERROR ELSE
IF N < 2 THEN FACTORIAL := 1
| ELSE FACTORIAL := N#FACTORIAL(N-1)

A function returns a value of the type indicated in its dec-
laration, and may be used wherever a value of that type is.

legal. (It may also be used as a statement in which case the

function value is ignored);
P :- R.ADD(S)
X := NORM(MATRIX, 10)

IF NORM (MATRIX, 10) & &-6 THEN
OUTTEXT ("ELEMENTSWALLWMZERO")

Section: 2.5.4

System/360 s I M U L A Page: S
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

A PROCEDURE-declaration defines a procedure associated with a
PROCEDURE-identifier. The chief component of a PROCEDURE dec-
laration is the PROCEDURE-body which may be activated through

a PROCEDURE-statement or a function-designator.

If the procedure has formal-parameters, then their identifiers
are listed in the formal-parameter part. No formal-parameter
identifier may appear more than once, and specifications of all
formal-parameters must be supplied. Whenever the procedure is
activated by a PROCEDURE-statement or function-designator, the
formal-parameters are either assigned the values of the actual-
parameters (call by value, call by reference) or else replaced

by the actual-parameters (call by name).

Identifiers in the PROCEDURE-body which are not formal-para-
meters are local if declared within that body, otherwise they
are non-local. A PROCEDURE-body acts like a block regardless

of its format. Consequently, the scope of any label to a state-
ment within the body or to the body itself can never be ex-
tended beyond the PROCEDURE-body. In addition, if the identi-
fier of a formal-parameter is redeclared within the PROCEDURE-
body (or used as a label), it is given local significance and

the corresponding actual-parameter becomes inaccessible.

When a PROCEDURE-declaration is given a type, it designates a
function. The type of this function is the type of the PRO-
CEDURE and for any activation its value is the last value
assigned to an occurrence of the PROCEDURE-identifier within
the PROCEDURE—body. If no such assignment is made, then the
result of the function-designator takes a default value which

is identical to the initial value of a declared variable of that

type.

Section: 2.5.4

System/360 S I M U L A Page: 6
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

Within the PROCEDURE-body of a function-procedure, an assign-
ment may be made to an occurrence of the PROCEDURE-identifier.
Every other occurrence of a PROCEDURE~identifier denotes another

activation of the procedure (recursion).

Section: 2.5.4

System/360 , S I M u I. A Page: 7
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator:GB

PARAMETER TRANSMISSION

N.B. There are three possible modes for parameter transmission

call by value
call by reference

call by name

All three are allowable for parameters to procedures, but only
call by value and call by reference are valid for parameters

to classes. Since call by value and call by reference are common
to procedure and class declarations, these sections apply to

class declarations as well.

If no mode is specified in the mode part, then the parameter
is transmitted by the appropriate default mode which is call
by value for value type parameters, and call by reference for

other kinds of parameters.

The available transmission modes for legal parameters to pro-

cedures are shown in the following table:

Section: 2.5.4

System/360 SIMULA Page: 8
Level: 0
. Date: 5/4-1971
USERS GUIDE ..
Originator: GB
PROCEDURE PARAMETERS
Parameter Transmission

by value by reference by name
value-type D X 0
object-reference X D 0
TEXT 0 D 0
value~-type ARRAY 0 D 0
reference-type ARRAY X D 0
PROCEDURE X D 0
type PROCEDURE X D 0
LABEL X D 0
SWITCH X D 0

D : default mode
0 : optional
X : illegal

Section: 2.5.4

System/360 S I M U L A Page: 3
\ Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

Call by value

A formal-parameter called by value designates a local copy of

the value obtained by evaluating the actual parameter. The
evaluation takes place at the time of procedure entry. Through-
out the lifespan of the procedure or class body, the formal-para-
meter acts like a local variable (or value type array) and its
contents may be accessed and changed by local assignments. In
the case of an object, the contents may be accessed and changed

from without by remote accessing.

Value specification is redundant for a parameter of value type.
There is no call by value option for object references, refe-
rence-type ARRAYS, PROCEDURES, type-PROCEDURES, LABELS and
SWITCHES.

ExamEle:

Given the program:

BEGIN PROCEDURE CALL BY VALUE(X,Y,T1,T2,B);
VALUE T1, T2, Bj;
REAL X, Y; TEXT T1, T2; BOOLEAN ARRAY Bj;

BEGIN +.v.vu.. teeesescae... END;

BOOLEAN ARRAY TRUTH(0:3);

TEXT S;
REAL NUM;

NUM := 3.5; S := COPY("+++");
TRUTH(2) := TRUE;

CALL BY VALUE(4,NUM,S,"0.K",TRUTH);
END

then a snapshot on procedure entry shows the initialised

values for the formal-parameters.

System/360 SIMULA

USERS GUIDE

Section: 2.5.4

Page: 10
Level: 0
Date: 5/4-1971

Originator: GB

BLOCK
PROCEDURE CALL_BY VALUE
BOOLEAN ARRAY TRUTH >[FALSE
TEXT S ~ ggggE
REAL NUM 3.5 FALSE
>CALL_BY VALUE
+ + +
REAL x-l 4.0
REAL Y 3.5
TEXT Tl —_
TEXT T2 —— > [0.K.
BOOLEAN ARRAY B e———— [FALSE
current ceees ggégE
statement FALSE

Section: 2.5.4

System/360 S I M U L A Page: 11
’ Level: 0
Date: 5/4-1971

USERS GUIDE
, Originator: GB

Call by reference

A formal-parameter called by reference designates a local copy

of the reference obtained by evaluating the corresponding actual-
parameter. The evaluation takes place at the time of the pro-
cedure entry or object generation. Throughout the lifespan of
the PROCEDURE- or CLASS-body, the formal-parameter acts like a
local quantity.

If the formal-parameter is a reference-type variable, its con-
tents may be changed by assignments within the body (or exter-

nally by remote accessing in the case of objects).

An ARRAY, PROCEDURE, LABEL or SWITCH parameter called by refe-
rence remains fixed and references the same entity throughout
its scope. Of course, the contents of an ARRAY called by refe-

rence may well be changed through assignments to its components.

For an object-reference type parameter (which may be a variable,
PROCEDURE or an ARRAY), the qualification of the matching actual-
parameter may coincide with, or be inner to, the qualification

of the formal-parameter.

SIMSET BEGIN INTEGER PROCEDURE NULLREF(L,N); REF(LINK) ARRAY L;
INTEGER N;
BEGIN INTEGER J, COUNT;
FOR J := 1 STEP 1 UNTIL N DO
IF L(J) == NONE THEN COUNT := COUNT + 1;
NULLREF := COUNT;
END;
INTEGER C;
REF(LINK) ARRAY Q(1:50);

NULLREF(Q,50);

O
I

System/360

USERS GUIDE

SIMULA

Section: 2.5.4
Page: 12
Level: 0

Date: 5/4-1971

Originator: GB

On the 'procedure call, a snapshot is

SIMSET

PROCEDURE NULLREF
INTEGER C

REF(LINK) ARRAY Qe

C := NULLREF(Q,50)

NONE

NONE

e e

current

—

INTEGER NULLRET
INTEGER N
REF(LINK) ARRAY L

0
50

[-

statement

Y

Section: 2.5.4

System/360 SIMULA Page: 13
Level: 0
Date: 5/4~1971
Originator: GB

USERS GUIDE

Call by name

Call by name is an optional transmission mode available for
parameters to procedures, but not to classes. It represents
a textual replacement in that the formal-parameter may be con-
sidered replaced throughout the PROCEDURE-body by the corres-

ponding actual-parameter.

Whereas call by value and call by reference operate on vari-
ables local to the PROCEDURE-body itself, call by name operates
on non-local quantities and can alter global quantities. It is
therefore especially useful for the controlled alteration of
several variables external to the PROCEDURE-body.

The following rules apply:

1) the type of a name parameter is that prescribed by the

corresponding formal specification.

2) if the type of the actual-parameter does not coincide with
that of the formal specification, then an evaluation of the
expression is followed by an assignment of the value or
reference obtained to a fictitious variable of the latter
type. This assignment is subject to the rules of section
7.2. The value or reference obtained by the evaluation

is the contents of the fictitious variable.

Section 7.2 defines the meaning of an assighment to a variable
which is a formal-parameter called by name, or is a subscripted
variable whose array identifier is a formal-parameter called by
name, if the type of the actual parameter does not coincide with

that of the formal specification.

r

Section: 5 5.4

System/360 SIMULA Page: 1y
Level: 0
USERS GUIDE Date: 5/4-1971
Originator:gp

Assignment to a PROCEDURE-identifier which is a formal para-

meter is illegal, regardless of its transmission mode.
Notice that each dynamic occurrence of a formal-parameter called
by name, regardless of its kind, may invoke the execution of a

non-trivial expression, e.g. if its actual-parameter is a remote-

identifier.

BEGIN PROCEDURE SWAP(A,B); NAME A, B; REAL A, B;

BEGIN REAL X;

X 1= Aj

A := B; B := X3
END %##3SWAP##3#
REAL P, Q3
P = 4,0; Q := 5.7,

SWAP(P,Q);

END

Section: 2.5.4

System/360 S I M u L A Page: 15
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator:GB

A snapshot at the procedure call is:
| —
PROCEDURE SWAP
REAL P 4.0
REAL Q 5.7 /

SWAP(P,Q)

—————e

REAL A P\Q::::
REAL B
0.0
0

REAL X

REAL ¥ Program Sequence Control

PSC IR TR (PSC) references the current

statement

No local copies are made. Every occurrence of A or B in the
PROCEDURE-body means a re-evaluation of the actual-parameter.
Notice that the actual-parameters are evaluated in the context

of the procedure call.

Section: 2.5.5

System/360 S l M u L A Page: 1
: Level: 0
Date: 5/4-1971

USERS GUIDE
Originator:GB

5.5 CLASS DECLARATIONS

CLASS declarations define concepts. CLASS instances are called
objects and many objects. of a given class may exist simultaneous-
ly to be examined and manipulated by the program. Objects are
generalisations of blocks and procedures, as the environment of
either a block instance or a procedure instance can only observe

the result of its actions.

CLASS-declaration

[CLASS-identifier]main-part

main-part

[virtual-part]CLASS-body

. e 5
CLASS CLASS ldentlfler“{parameter-paré}~

parameter-part

(identifier-1list); [VALUE identifier-1list;l... CLASS-spec-part

CLASS-spec-part
(¢ 2 B
[LONGIREAL

[SHORT]INTEGER
CHARACTER
§<E%MLEAN > identifier—list;> cen
REF(CLASS-identifier)
TEXT

Jtype]ARRAY

Section: 2.5.5

System/360 » S I " U l_ A Page: 2
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator:GB

virtual-part

7 - T j
[LONG] REAL

[SHORT] INTEGER
CHARACTER
BOOLEAN
VIRTUAL: REF(CLASS-identifier) ddentifier-list;|{ ...
{<{ TEXT > >
[typel ARRAY
PROCEDURE

type PROCEDURE
LABEL

L\SWITCH J

CLASS=-body
statement
{split—body

split~body

BEGIN [declaration;] ... [statement;] ... INNER
[; statement] ... END

Section: 2.5.5
System/360 SIMULA Page: 3

Level: 0

Date: 5/4-1971

Originator: GB

USERS GUIDE

The available transmission modes for legal parameters to

classes are shown in the following table:
CLASS PARAMETERS
Parameter Transmission
call by value call by reference
value-type
reference-type

TEXT
value-type ARRAY

x O O x U
O g g g <

reference-type ARRAY

D : default mode
0O : optional
X : 1llegal

The transmission modes '"call by value" and "call by reference"

are explained in section 5.4,

The discussion of CLASS-declarations begins by considering two

selected examples of increasing scope.

, Section: 2.5.5
System/360 SIMULA Page: 4
Level: 0
Date: 5/4-1971
Originator: GB

USERS GUIDE

Example 1: Empty prefix and virtual part

The declaration of a class A can have the form:

CLASS A(FP,); SP

A
BEGIN Dys FP,
actlonsA; DA

END actionsA

CLASS A declaration A object
A: CLASS~identifier
FPy: - list of the formal parameters of A
SP,: list of specifications of each of the formal

parameters of A

DA: declarations of the CLASS-body of A

actionsA: actions of the CLASS-body of A
The CLASS-body of A is a block (one form of statement).

The quantities passed as parameters or declared in the outer-
most block of the class body are called the attributes of
class A and are attributes of every object of the class.
Attributes specified as formal-parameters may only be simple
variables or arrays. Declared attributes may be simple vari-

ables, arrays, proper-procedures, function-procedures and classes.

Section: 2.5.5

System/360 SIMULA Page: 5
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

The expression
NEW AC...)D

creates an object of the class A (the order and number of the
actual-parameters must correspond with the order and number of
the formal-parameters) and commences execution of its actions.
The execution continues until the final END of the class body

is encountered, when the execution is terminated. However this
may be interrupted in three ways - by a GOTO-statement (which
leads out of the object), or by calls on the system procedures
"detach", "resume" or "call". A GOTO exit will leave the object
in the terminated state. "Detach" suspends the actions of the
class body and names it an independent component of the pro-

gram. Its actions may be continued later by a call on "resume".

Sectica: 2.5.5
System/360 SIMULA Page: B

Level: 0

Date: 5/4-1971

Originator: GB

USERS GUIDE

Example 2: Non-empty prefix and empty virtual part

A CLASS-declaration may contain a prefix which is the identifier
of another class declared either in the same block, or in the

prefix to the same block. The prefixed class is a subclass of

the prefix.
e.g.
A CLASS B(FPp); SPy; FP,
BEGIN Dy D,
actlonsB; actlonsA
END _FPB
Dg
actionsB
CLASS B declaration B object

A B-object is a compound object which has all the attributes
and actions of the prefix A and the main-part of class B.
A B-object is generated by

NEW B(APA, AP,)

B
with a list of actual-parameters corresponding in number and
order to those of an A-object and those of the main-part of B.
On generation, the actions of the A-part are executed first
and then those of the B-part. The actions of the A-part have
access to the attributes of A only, the actions of the B-part
to those of B and of A.

Section: 2.5.5
System/360 SIMULA Page: 7

Level: 0

Date: 5/4=1971

Originator: GB

USERS GUIDE

CLASS HIERARCHIES

In general, a hierarchy of classes may be introduced.

e.g.
declarations

CLASS Cl..veu.ns

Cl CLASS C2..44443

Cl CLASS C3..¢.44

C2 CLASS CY4......

C2 CLASS Ch..... .3

hierarchy objects
Cl C2 C3 Chu C5
Cl -Cl Cl Cl Cl Cl
VN

C2 C3 C2 C3 C2_ C2

CY Nc5 Cu C5

Section: 2.5.5

System/360 SIMULA ' Page: 8
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator:GB

The prefix sequence of a class is the sequence of classes in

its prefix chain

e.g. 1in the above figure, the prefix sequence of

Cl is empty
C2 is Cl1
C5 is Cl1 C2

If the prefix sequence of a class CN is Cl’ C2,) CN—l’
then a CN object may be depicted by:

Cl
classes outer to CK
subclasses of CKi CK class equal to CK
or classes 2 |..e... }
1nclgded in CK‘ CN classes inner to CK

An object of a prefixed class is a compound object which is
the union of the formal-parameters, declarations and actions
of the classes in its prefix sequence together with the struc-

ture defined .in its own main-part.

The mechanism of concatenation may be extended to the case of

prefixed-blocks, e.g.

SIMULATION BEGIN

END

The execution of a prefixed block begins by executing the

actions of the initial operations of the class and then those
of the block body. The attributes of the class are accessible
inside the block body and this block is thus given a built-in

environment in which to operate.

Section: 2.5.5

System/360 S I " u L A Page: 9
Level: 0 |
Date: 5/4-1971

USERS GUIDE
Originator: GB

INNER

The order of the execution of actions in an object may be

altered from their textual order by use of INNER.

Consider
CLASS A ...;
BEGIN; Sl; INNER; S2 END;
A CLASS B ...;
BEGIN ; S3 END

In an A object INNER acts as a dummy statement, and the

actions executed are
S1l; S2

In a B object, INNER forces execution of S3 before those of
52, thus

Sl S35 S2

- Section: 2.5.5
System/360 SIMULA Page: = 10
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

VIRTUAL QUANTITIES

The virtual mechanism is a method of extending the rules of
accessibility, whilst still retaining security. The virtual

mechanism 1is useful in two circumstances.
1) +to redefine attributes
2) to give accessibility to attributes declared at inner

levels

1) attribute redefinition

Usually when a class hierarchy is constructed, an attri-
bute has a fixed meaning no matter how many prefix levels

are added to the class containing its declaration.

Sometimes, however, we may wish to redefine the attribute

throughout its scope.

Section: 2.5.5

System/360 : 11
yeten SIMULA e
Level:
Date: 5/4-1971

USERS GUIDE
Originator:GB

Example: Consider the description of a CLASS ROW for

manipulating vectors.

CLASS ROW(A,N); REAL ARRAY A; INTEGER N;

BEGIN REAL PROCEDURE NORM;
BEGIN REAL T; INTEGER I;
FOR I := 1 STEP 1 UNTIL N DO

T := T + ACI)*A(I);
NORM := SQRT(T);
END ###NORMu#s#s;
PROCEDURE NORMALISEj;
BEGIN REAL T; INTEGER I;
T NORM;
IF T = 0 THEN

BEGIN T := 1/T;
FOR I := 1 STEP 1 UNTIL N DO

ACI) := A(I)#T;

END;

END ###NORMALISE###;

’ IF N < 1 THEN ERROR;
END ##%#ROW##*

Section: 2.5.5

System/360 S 1 M u L A Page: 12
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

A new ROW object has four attributes:

1) a REAL ARRAY A running from 1 through N
2) a specified upper-bound N

3) a REAL PROCEDURE NORM which computes the square root
of the sum of the square of its components. (NORM
gives the "magnitude" of the ARRAY A).

4) a PROCEDURE NORMALISE which divides through each array
element by the current value of NORM.

If the user wishes to use a different NORM then the class

has to be rewritten.
However by altering the class outline to

CLASS ROW(A,N); REAL ARRAY A; INTEGER Nj
VIRTUAL : REAL PROCEDURE NORM;
BEGIN REAL PROCEDURE NORM...;
PROCEDURE NORMALISE...;
IF N < 1 THEN ERRORj
END ##xROW#*%%

it becomes possible to alter the definition of NORM in a
subclass of ROW, and yet have the new meaning available at

the ROW level where it is needed in any call on NORMALISE
e.g.
ROW CLASS ROW1;

BEGIN REAL PROCEDURE NORM;
BEGIN REAL S,T; INTEGER I;

FOR J := 1 STEP 1 UNTIL N DO
BEGIN T := ABS(A(I));
IF T > S THEN S := T;
END;
NORM := S;

END ###NORM##%
END ###ROWl##%#

Section: 2.5.5

System/360 STMULA : Page: - 13
| : Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: gB

2)

ROW OBJECT ROW1 OBJECT
REAL ARRAY A | REAL ARRAY A
INTEGER N INTEGER N
VIRTUAL : NORM = VIRTUAL : NORM *
REAL PROCEDURE NORM{G— PROCEDURE NORMALISE
PROCEDURE NORMALISE REAL PROCEDURE NORM&

In a ROW1l object, the NORM attribute declared at the ROW
level is deleted and is never available. Through the
VIRTUAL mechanism, the only valid NORM attribute is that
declared at the ROW1l level.

Inner accessibility

This is illustrated by an example.

In processing a linked structure which contains objects of
various classes, (say A, B) the links are provided by their
common part CLASS NODE.

CLASS NODE; BEGIN REF(NODE)NEXT; END;
NODE CLASS A;
NODE CLASS B;

Section: 2.5.5

System/360 S I M u LA Page: 14
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

If the structure is linked by following REF(NODE) NEXT
references, then, in the normal way, the information in

the structure would be dumped by

X := FIRST;
WHILE X =/= NONE DO
BEGIN IF X IS A THEN X QUA A.DUMP
ELSE X QUA B.DUMP;
X := X.NEXT;
END;

which is tedious to write. By writing the classes by

CLASS NODE; VIRTUAL : PROCEDURE DUMP;
BEGIN REF(NODE) NEXT;
END ###NODE##%
NODE CLASS Aj;
BEGIN PROCEDURE DUMP ...;

END;
NODE CLASS B;
BEGIN PROCEDURE DUMP ...;
END;

we can write instead

X := FIRST;
WHILE X =/= NONE DO
BEGIN X.DUMP;

X := X.NEXT;
END;

Section: 2.5.5

System/360 P : 15
ystem SIMULA Lagel .
evel:
Date: 5/4-1971

USERS GUIDE
Originator:GB

A virtual quantity is either unmatched or else matched

with an attribute (with the same identifier) declared at

the same or an inner prefix level. The matching attribute
must be of the same type and the same kind (variable, array,
procedure, label or switch) as that specified in the virtual
part, except in the case of object-reference-function-
procedures. The type REF(C) may be matched with the type
REF(C) or type REF(D), where D is a subclass of C. A VIRTUAL
proper-PROCEDURE may be matched with any type of procedure.
In both these cases, the type of the match is the type of

the matching declaration.

A virtual quantity of a given object can have at most one
matching attribute. If matching declarations are given at
more than one prefix level, then the one at the innermost
prefix level is taken. The match is valid at all prefix
levels of the object equal or inner to that of the speci-
fication.

Section: 2.5.6

S 360. , P : 1
ystem/3 SIMULA I-‘age:L o i
evel:
USERS GUIDE 7 Date: 5/4-~1971

Originator: GB

5.6 EXTERNAL DECLARATIONS

External declarations will be a part of future system develop-

ment.

: Section: 2.6
Syétem/?ﬁﬂ,z SIMULA . Pagsii,,::%ﬁ
S Level: 0
Date: 5/4-1971

USERS GUIDE -
S Originator: GB

6. EXPRESSIONS
Expressions are rules for computing values. Expressions may
occur on the right hand sides oif assignment statements and.as_

actual parameters.

expression

arithmetic-~expression b

cendition

CHARACTER-expression

~"

< designational-expression
object-expression
TEXT-expression
TEXT-value

\ . J

IF-clause
IF condition THEN

The constituents of expressions drefoperators and oﬁerands.

The operands are constants, variables or function désignators.
No two operands may occur side by side - they must be separated
by at least one operator. A discussion of variables and fuﬁc—

tion designators precedes the discussion of expressions.

Section: 2.6.1
System/360 SIMULA Page: 1
Level: 0
Date: 5/4-1971
Originator: GB

USERS GUIDE

6.1 VARIABLES

The value of a variable may be used in expressions for forming
values and may be changed by assignments to that variable.
The value of a variable is the value of the last assignment to

it, or its initial value if no assignment has yet been made.
variable

simple-variable

subscripted-variable

remote-variable

simple-variable

identifier

subscripted-variable

identifier
remote-variable (subscript-list)

subscript-list

arithmetic-expression [, arithmetic-expression]...

remote-~variable

(simple-text-expression .
.o . . identifier
simple-object-expression .

Section: 2.6.1

System/360 . SIMULA Page: 2
Level: 0 1
Date: 5/4-1971

USERS GUIDE
Originator: GB

Examples:
simple-variable: EPS

Al5

Al6_C
subscripted-variable: SON(2)

ELEMENT(I,J)

THIS SQUARE.LONG_SIDE(2)
remote-variable: ANNA.FATHER

APOSTLE(6) .LEADER

C.P.X

LINE(2).SIDE(3)

A variable is a designation for a single value.

simple-variable

The type of the value of a particular simple variable is.

given in the declaration for that variable.

remote~variable

An attribute of an object is identified by the following infor-

mation:

1) a reference to the object
2) a class which includes that of the object
3) an attribute identifier defined in that class or any

class belonging to its prefix sequence.

System/360

Section: 2.6.1

: A Page: 3
SIMULA age
‘ Level: 0
Date: 5/4-1971

USERS GUIDE

Originator: GB

Let X be a simple object expression qualified by class C,

and A an attribute identifier.

The X.A is valid if X =/= NONE and class C has at least one
attribute identified by A. If there is only one attribute with

identifier A contained in class C or in its prefix chain, then

it is designated by X.A.
attribute with identifier A, then X.A designatés the attribute

If class C contains more than one

with identifier A at the innermost prefix level.

N.B.

The main part of any class declaration can contain at

most one attribute with thaf identifier.

Examgle:

_Ch

C2

C3

X1

REF(C1)X1l; REF(C2)X2; REF(C3)X3; REF(CH)XU

CLASS
BEGIN

CLASS
BEGIN

CLASS
BEGIN

CLASS
BEGIN

= X2

Cl(A); REAL A;

C2;

TEXT Aj

C3;

Ch

eeesseses END;j
.. END;

esseeses END;

«sseeees END;

BOOLEAN A;

:= X3

* -

Xh

:= NEW CL(6.0);

System/360

Section: 2.6.1

SIMULA Page: y
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: gB

X1
X3

X1
X3

X1
X3

X1
X3

remote-variable

.A, X2 QUA CLl.

QUA Cl.A, Xu

QUA C2.A, X2
QUA C2.A, X4

QUA C3.A, X2
LA, X4 QUA C3

QUA CL.A, X2
QUA CL.A, X3

A,
QUA C1.A

A,

QUA C2.A

QUA C3.A,

A

QUA Cu.A,
QUA CL.A, X4.A

<
[

REAL

TEXT

TEXT

BOOLEAN

It is not possible to access either label or switch identifiers

re

motely.

If class C or a class in its prefix chain contains a class

attribute, then accessing of any attribute in class C is only

possible through a connection statement.

Exaggle:

s e e

CLASS Cl;
Cl CLASS C2;

BEGIN REAL Dj;

BEGIN CLASS F.....;
BOOLEAN Q;

END;
REF(C2)X;

Then X.F, X.Q,

are all illegal attempts at remote

X.D

END;

accessing.

Section: 2.6.1

System/360 S I M UL A Page: 5
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

But it is legal to write

INSPECT X DO

BEGIN ...F...
R O
oD

END

or, for the REAL attribute of Cl, X QUA Cl1l.D.

A simple-text-expression is itself a compound structure in
the sense that it has attributes accessible through the dot
notation. TEXT-value assignments may be made through the
use of the system-defined procedure SUB, STRIP and MAIN to
sub-fields (T.SUB, T.STRIP) and super~fields (T.MAIN) of the.
text object referenced by T.

e.g. T.SUB(1,24) := "CHANGEUINUFIRSTu2HuCHARS"
T.MAIN.STRIP := NOTEXT

Subscripted variables

A subscripted variable is an array component. The type of a
subscripted variable is the type of the array. Each arith-
metic expression in the subscript list is called a subscript
and the complete list of subscripts is enclosed in parentheses
(). Each subscript acts as a variable of type INTEGER and the
evaluation of the subscript is understood to be equivalent to

an assignment to this fictitious variable.

No attempt is made to ensure that each subscript lies within

the corresponding subscript bounds in an array of two or more
dimensions. Such arrays are transformed into one dimensional
table and the subscripts computed to give access to the approp-
riate entry. Provided this rule gives an entry within the bounds

.of the table, then the subscripts will be accepted. Otherwise,

a runtime error will result.

Section: 2.6.2

System/360 SIMULA Page: . 1
’ Level: 0
Date: 5/4-1971

USERS GUIDE)
Originator:GB

6.2 TFUNCTION DESIGNATORS
A function designator denotes the value obtained by evaluating
the associated procedure body when supplied with the associated

actual parameter list (if any).

function-designator

<{identifier
remote-identifie

%} actual-parameter-list

actual-parameter-list

(actual-parameter[, actual-parameter]...)

actual-parameter

rexpression

ARRAY-identifier
J SWITCH-identifier ,
PROCEDURE-identifier
| LABEL-identifier

v/

Exa@RLSE:

ININT
INTEXT(20)
SIN(A+B)

H.FIRST
CURRENT . NEXTEV. SUC
POINT(5).MODULUS

Section: 2.6.2

System/360 SIMULA Page: = 2
' Level: O
Date: 5/4-1971

USERS GUIDE
Originator:GB

Function-designators denote single arithmetic, BOOLEAN, TEXT or
CHARACTER values or object- or TEXT-references. These values
are obtained by applying a set of rules defined by the procedure
declaration to a set of actual parameters. The actual parameter
list must correspond in number and order to the formal parameter

list in the corresponding procedure declaration.

Certain identifiers, expressed as procedures, are pre-defined

in the SIMULA system. A list is given as Appendix B. Calls

to standard procedures conform to the syntax of calls to de-
clared procedures and are equivalent to normal procedure calls.
The identifier of a system defined procedure is not reserved,
and may be declared to have another meaning at any level. (This
is not recommended practice as it will obviously make the pro-
gram more difficult to read and understand). The identifier
then assumes the new meaning throughout the scope of the block

in which it was declared.

Section: 2-6.3

System/360 S I " U L A Page: 1
Level: 0
Date: 5/4—1971

USERS GUIDE
Originator: GB

6.3 ARITHMETIC EXPRESSIONS
An arithmetic expression is a rule for computing a number.

arithmetic—expression

simple-arithmetic~expression
IF-clause simple-arithmetic-expression

ELSE arithmetic-expression

simple-arithmetic—expression

[+] arithmetic-primary [arithmetic-operator arithmetic-

primary]

arithmetic-primary

r ~
arithmetic-constant
arithmetic-variable

arithmetic~-function-designator

\(arithmetic—expression)

arithmetic-operator

e[-] e ==] /] /7

Section: 2.6.3

System/360 S I M U L A Page: 2
Level: 0
Date: 5/4-1971

USERS GUIDE ..
Originator: GB

Examples:

arithmetic-primary

15.7

fu

X

SIN(23#P1/180)

(IF X>0 THEN X ELSE -X)

arithmetic-expression

X#82 + Y##2

X + A(J)##2

EXP(2 + (IF B THEN 3 ELSE 4))

IF X > 0 THEN 1 ELSE IF X < 0 THEN -1 ELSE O
-3#(-5)

Examples of incorrect arithmetic expressions:

(A + B) C) left parenthesis missing
-3#=5 two operators together

(A + B) & - 0.5 exponent is not a primary

X + (IF Y < 0 THEN 2) ELSE alternative is missing
X + IF Y < 0 THEN 2 ELSE 3 the IF expression must be

enclosed in parentheses

The value of a simple-arithmetic-expression is the value ob-
tained by executing the arithmetic operations on the actual
numneric values of the primaries of the expression. The actual

numeric value of a primary is obvious in the case of numbers.

Section: 9.5.3

System/360 SIMULA Page: 3
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

For variables, it is the current value (assigned last in the
dynamic sense); and for function-designators it is the value
arising from the computing rules defining the function-pro-
cedure when applied to the current values of the procedure para-
meters in the expression. For arithmetic-expressions enclosed
in parentheses, the value must, through a recursive analysis,

be expressed in terms of the values of primaries of the other

three kinds.
In the more general arithmetic-expressions, which include IF-

clauses, a simple-arithmetic-expression is selected on the basis
of the actual values of the BOOLEAN conditions.)

If the form of the arithmetic expression is

IF condition THEN simple-arithmetic-expression

ELSE arithmetic-expression

the selection of the appropriate value is made according to

the rules:
1. The condition in the IF-clause is evaluated.

2. If the result of 1 is TRUE, then the value of the ex-
pression is the value of the simple arithmetic expression
following the IF-clause. Otherwise it is the value of the

arithmetic expression following the ELSE.
e.g. IF X < 0 THEN 4 ELSE 17

if X < 0 then the value is 4
if X 0 or X > 0 then the value is 17.

Section: 2.6.3

‘System/360 SIMULA Page: 4
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

Arithmetic operators and types

Apart from the CONDITIONS of IF-clauses, the constituents of
arithmetic expressions are of types SHORT INTEGER, INTEGER,
REAL or LONG REAL.

The following hierarchy may be associated with these types.

type number type shortened notation
1 SHORT INTEGER ST
2 INTEGER
3 REAL R
4 LONG REAL LR

The types are ranked according to their associated type number.
Thus LONG REAL is higher than INTEGER, INTEGER is lower than

REAL.

The meanings of the basic operators are:

*3%®

//

addition
subtraction
multiplication
exponentiation
division

integer division

Section: 2.6.3

System/360 SITMULA Page: 5
: Level: 0
Date: 5/4-1971

USERS GUIDE
Originator:GB

The types of arithmetic expressions are given by the following

rules:
1) The operators + and - may be used as unary operators

+ operand

- operand

The type of the resulting expression is the type of the

operand.

2) The type of the arithmetic expression
operandl {+|-} operand?

is the higher of the types of operandl and operand2. This
is displayed in the table:

type of operandl type of operand?
SI I R LR
SI SI I R LR
I I I R LR
R LR
LR LR LR LR LR

3) / denotes division, and
operandl / operand?

always results in an arithmetic expression of type REAL

or LONG REAL. If either of operandl or operand2 are of
type LONG REAL then so is the resulting expression, other-
wise it is of type REAL.

Section: 2.6.3

System/360 S l M U L A Page: 6
B Level: 0
Date: 5/4-1971
USERS GUIDE ..
Originator:GB
This is displayed in the table:
operandl / operand2?
type of operandl type of operand?
SI I R IR
ST C R R R LR
R R R LR
R R R LR
LR LR LR ‘LR LR

A run time error will always result if the value of

operand?. is zero.

4) // denotes integer division. The operator is defined
only between two operands of type INTEGER and gives the
INTEGER result

A // B = SIGN (A%*B) % ENTIER (ABS(A/B))
If, in
operandl // operand?

the types of operandl and operand? are not INTEGER, then
they are rounded to type INTEGER and then the operation,

as defined above, is carried out.

Examgles:

10 // 5 = 2

S8 // 5 = 1

-9 // 5 = =1

9 //-5 = -1

Section: 2.6.3

System/360 / S I M U L A - Page: 7

Level: 0

Date: 5/4-1971

USERS GUIDE
Originator: GB

5)

)

The operation
operandlssoperand?2

denotes exponentiation, where operandl is the base and

operand2 the exponent.

e.g. 2%%3 means 8 (=2%2%2)

(3)*
2#%(3%%y) means 2
2% %ALY means (23)"

The type is real unless one of operandl or operand? is of
type LONG REAL when it is LONG REAL.

When the type of an arithmetic expression can not be deter-
mined at compile-time, it is considered to be the highest

possible type in the hierarchy of the alternatives.

If in

IF X > 0 THEN P.R ELSE S

the result of an expression is of one arithmetic type and
the expression is assigned to a variable of another arith-

metic type, the result is transformed to the appropriate

type.

Section: 2.6.3

System/360 : 8
ystem/36 SIMULA Eagel
evel: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

Arithmetic operator precedence

The evaluation of an arithmetic-expression can be considered
as taking place in a number of scans through the expression,

each scan going from left to right:

1) The values of the constants, variables and function

designators are evaluated.

2) Any subexpression between a left parenthesis and its
matching right parenthesis is evaluated (according to
rules 2, 3, 4, 5) and is used as a primary in subsequent

calculations.
3) All exponentiations are evaluated.

4) All multiplications, divisions and integer divisions are

evaluated.

5) All additions and subtractions are evaluated.

The operator precedences may be summarised by

*3%

£ ow N

Arithmetics of REAL and LONG REAL quantities

Quantities of type REAL and LONG REAL are defined to a finite
accuracy. Thus any operation performed on such quantities is
subject to a possible deviation. The control of the possible

consequences should be carried out by a numerical analyst.

Section: 2.p5.14

System/360 SITMUL A Page: 1
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: gg

6.4 CONDITIONS

Conditions (or BOOLEAN-expressions) return the values TRUE or

FALSE. Their prime use is in conditional expressions and con-

ditional statements.

BOOLEAN-primary [BOOLEAN-operator BOOLEAN—primary]..i}
IF-clause BOOLEAN-primary ELSE condition

BOOLEAN-primary

7

BOOLEAN-variable
BO0LEAN-function-designator
TRUE

(] ﬁ TALSE (

relation

\(condition)

BOOLEAN-operator

{/\ND |OR |EQV]IMP}

relation

R Y

~
/\H\/HJ

p
\4

simple-value-expression ; simple-value-expression

A
it

\.

—~7

simple-reference-expression {:7i} simple-reference-expression

LSimple—reference—expression {}ﬁ} CLASS-identifier)

Section: 2.6.4

System/360 STM U’L A Page: 2
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: gp

Note the equivalent modes of writing:

- ' or NOT
= EQ
== NE

< LT
<= LE

> GT

>= GE

Examgles:

TRUE

SON AND HOLY GHOST
X = 0O0R (Y > C)
- (X IN HEAD)

T == NOTEXT

FATHER =/= NONE

C = 'A!

System/360 SIMULA

USERS GUIDE

Section: 2.6.4

Page: 3
Level: 0
Date: 5/4-1971

Originator: gp

BOOLEAN OPERATORS

The meanings of the logical operators

NOT not

AND and

OR ‘or

IMP implication
EQV equivalent

are given in the table:

-

P T T F F

Q T F T F
-P F F T T IF P
P AND Q T F F F IF P
P OR Q T T T F IF P
P IMP Q T F T T IF P
P EQV Q T F F- T IF P

THEN FALSE ELSE TRUE
THEN Q ELSE FALSE
THEN TRUE ELSE Q
THEN Q ELSE TRUE
THEN Q ELSE Q

System/360

Section: 2.6.4

SITMULA Page: ¥

Level: 0

USERS GUIDE Date: 5/4-1971
Originator: GB

Precedence of operators

The sequence of operations within one condition is from left

to right with the following additional rules:

first:

second:
third:
fourth:
fifth:
sixth:

seventh:

arithmetic expressions (+, -, #%, %, /., //)
according to section 6.3

relations (<, <=, =, 9=, >, >=, ==, =/=, IS,
-

AND

OR

IMP

EQV

The use of parentheses is interpreted as in section 6.3.

IND

Section: 2.6.4

System/360 SIMULA Page: . 5
: Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

Relations

1

2)

IS, IN

The operators IS and IN test the class membership of a

referenced object:

X Is ¢C is TRUE only if X is a reference to an object
belonging to the class C, otherwise the value is
FALSE

X IN C is TRUE only if X is a reference to an object

belonging to either the class C or to a sub-

class of C, otherwise the value is FALSE.

Both X IN C and X IS C are FALSE if X == NONE.

Reference comparators (==, =/=)

These operators compare either two simple text references
or two simple object expressions. Two object (text)
references X and Y are identical if they refer to the same
object (text value instance) or if both are NONE (NOTEXT).
In these cases, the relation == Y is TRUE. Otherwise it
is FALSE.

The relation X =/= Y has the value of -(X==Y).
If X and Y are two text references, then X =/= Y and

X = Y may both be TRUE if X and Y refer to physically dis-

tinct character sequences which are equal.

Section: 92.5.14

S 3 : P :
evel: 0
USERS GUIDE Date: 5/4-1971

Originator: gp

3) Value comparators (=, =, >, >=, <, <=)

The relations take the value TRUE if the corresponding relation
is satisfied for the actual values of the expressions involved,

otherwise FALSE.

Examgles:
5 = 3 is - FALSE
UL AR A is FALSE

X < 0 is FALSE 1f the current value
: of X is positive or zero,
otherwise 1t is TRUE

If the values of two arithmetic expressions are compared and
they are of different types, then the value lower down in the
hierarchy is converted to the type of the higher before com-

parison is made.

Character values may be compared with respect to the collating

sequence. A relation

X REL Y

where X and Y are character values, and REL is a relational

oPérator has the same truth value as

RANK(X) REL RANK(Y)

‘ExamEle:
Tyl ¢ 1t is TRUE ' RANK('+') = 78
RANK('=') =126

Section: 2.6.4

Systeﬁ/360 SIMULA Page: 7
‘ Level: 0
USERS GUIDE . Date: 5/u-1971

Originator:GB

Two text values are equal if they are both empty or if they

are both instances of the same character sequence. Otherwise
they are unequal. A text value T ranks lower than a text .
value U if they are unequal in length and one of the following

conditions is fulfilled (otherwise it ranks higher):

1) T is empty

2) U is equal to T followed by one or more characters

3) If the first i-1 characters of T and U are the same,
and the ith character of T ranks lower than the ith

character of U.

ﬁxamgles:
NOTEXT = v TRUE
nOn < "9" TRUE
"ABCDE"="ABCDEF" FALSE
M412" == =120 TRUE

"ABC" = "ABC." FALSE

Section: 2.6.5

S 36 , . 1
yeren/3eo SIMULA. Paser
evel:
USERS GUIDE Date: 5/4-1971

Originator:GB

6.5 CHARACTER EXPRESSIONS

CHARACTER-expression

simple-character-expression
IF-clause simple-charactér—expression

ELSE character-expression

simple-character-expression

r h

CHARACTER=-constant
CHARACTER-variable
CHARACTER-function-designator
{(CHARACTER-expression)

\ v

CHARACTER-constant

'{any character from the data character set}'’

ﬁxamgle:
1ttt
lA'
IF X < 0 THEN 'w' ELSE 'Y!

The set of internal characters is ordered according to the
collating sequence (Appendix A). The collating sequence de-
fines a one-one mapping between interndl characters and in-

tegers expressed by the function procedures:

INTEGER PROCEDURE RANK (C); CHARACTER Cj

whose value is in the range 0 through 255 and

CHARACTER PROCEDURE CHAR (N); INTEGER N;

System/360

SIMULA

USERS GUIDE

Section: 2.6.5
Page: 2

Level: 0

Date: 5/4-1971

Originator: gp

The parameter value must be in the range 0 through 255 other-

wise a run time error results.

Two character subsets are defined by the standard procedures

BOOLEAN PROCEDURE DIGIT (C); CHARACTER C;

which is TRUE only if C is a digit, and

BOOLEAN PROCEDURE LETTER (C); CHARACTER Cj;

which is TRUE only if C is an upper case letter.

Example:

The following program scans an input file on SYSIN until "end

of file"
digits 0 - 9

BEGIN

END

INTEGER ARRAY INCIDENCES (RANK('0')

CHARACTER C; INTEGER Rj;
INSPECT SYSIN DO
WHILE = ENDFILE DO

BEGIN C := INCHAR;
IF DIGIT (C) THEN
BEGIN R := RANK(C);
INCIDENCES(R)
END;
END;

is met and records the number of occurrences of the

RANK('9'));

INCIDENCES(R) + 1;

Section: 2.6.6

System/360 Page: 1
ystem/ 0 S I M.U L.A » Lagel_ ‘ :
eveud:
USERS GUIDE . . Date: 5/4-1971

Originator: GB

6.6 DESIGNATIONAL EXPRESSIONS

A designational expression is a rule for obtaining the label

of a statement.

designational-expression

simple-designational-expression
IF-clause simple-designational-expression

ELSE designdational-expression

simple-designational-expression

LABEL-identifier
SWITCH=-identifier (subscript)

(designational-expression)

Examples:

valid LAB -
CHOOSE (I)
SELECT (IF X < 0 THEN 2 ELSE 3)
IF B < 0 THEN LAB_1 ELSE SLAB(1)

invalid X.LAB ' remote SWITCH- or LABEL-

identifiers are not allowed

Section: 2.6.6

System/360 SIMULA Page: 2
Level: 0
USERS ‘GUIDE Date: 5/4-1971

Originator:GB

The principle of evaluation is analogous to that of arithmetic-
expressions. In the general case, the conditions in the IF-
clauses will select a simple-designational-expression. . -

If this is a label the desired result s found. A switch desig=~
nator, on the other hand, refers to the corresponding switch
declaration and by use of the actual numerical value of its sub-
script (an arithmetic-expression) selects one of the designational-
expressions listed in the switch declaration by counting from

left to right. Since this value itself may be a switch desig-

nator, the definition is recursive.:

The evaluation of the subscript is analogous to that of sub-

scripted variables.

Section: 2.6.7

Syst 36 P . - 1
ystem/360 SIMULA Lagel :
evedl.
USERS GUIDE: Date: 5/4-1971

Originator: GB

6.7 OBJECT EXPRESSIONS
An object-expression is a rule for computing a reference to
an object or NONE. The type of the expression is REF (quali-

fication).

object-expression

simple-object-expression
IF-clause simple-object—expression

ELSE object-expression

simple-object-expression

f ~

NONE

variable

function-designator

A 4

< NEW CLASS-identifier[actual-parameter-part]
THIS CLASS-identifier
simple-object-expression QUA CLASS-identifier

(object-expression)

o/

.
ExamEles:

X

X.Y

SIDE (3)

THIS HEAD.SUC

NEW INFILE("CARDS")

THIS LINK QUA SUB_CLASS.ATTRIB

IF SUC IN LINK THEN SUC ELSE NONE

IF X =/= NONE
THEN (IF X.F =/= NONE THEN X.F.F ELSE NONE)
ELSE NONE

Section: 2.6.7

S&stem/360 SIMULA Page: 2
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

Qualification

The qualification of an object-expression is defined by the

following rules:

1) The expression NONE is qualified by a fictitious class

which is inner to all declared classes.

2) A variable, array or function designator is qualified as
stated in the declaration (or specification, see below)

of the variable or array or procedure in question.

3) An object-generator, local-object or qualified-object is
qualified by the class of the identifier following the
symbol NEW, THIS or QUA respectively.

4) A conditional object-expression is qualified by the class
at the innermost prefix level which includes the qualifi-
cation of both alternatives. If there is no such class, the

expression is illegal.

In
IF B THEN NONE ELSE S
the qualification is that of S (by rule 1).

5) A formal parameter of object-reference type is qualified
according to its specification regardless of the qualifi-

cation of the corresponding actual parameter.

6) The qualification of a function-designator whose pro-
cedure identifier is that of a virtual quantity, depends
on the access level. The qualification is that of the
matching declaration, if any, occurring at the highest
prefix level equal to or less than the access level, or

if none, that of the virtual specification.

Section: 2.6.7

System/360 SIMULA Page: - 3

Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

Object generators (NEW A....)

An object—generator invokes the generation and execution of

an object belonging to the identified class. The object is

a new instance of the corresponding (concatenated) class body.
The evaluation of an objeét generator consists of the following

actions.

1) The object is generated and the actual parameters of the
object generator are evaluated. The parameter values
and/or references are transmitted. (For parameter trans-

mission modes, see section 5.4).

2) Control enters the body of the object through its initial
BEGIN whereby it becomes operating in the "attached" state.

The evaluation of the object generator is completed:

Case a: Whenever the basic procedure "detach" is executed
"on behalf of" the generated object (see PART 3, section 1),

or
Case b: wupon exit through the final end of the object.
The value of an object-generator‘is the object generated as the

result of its evaluation. The state of the object after the

evaluation is either "detached" (case a) or "terminated" (case b).

Section: 2.6.7

S t 360 ; . 4
veten/ SIMULA Page:
evel:
USERS GUIDE - Date: 5/4-1971

Originator:GB

Local objects

A local-object "THIS C" is a meaningful expression within

1) the class body.of C or that of ény subclass of C,
or ‘ : :

2) a connection block whose qualification is C or a subclass
of C. | | |

The value of a local-object in a given context is the object

which is, or is connected by, the smallest fextuélly enclosing

block instance, in whiéh the‘local object is a meaningful ex-
pression. If there is no such block, the local object is illegal.
For an instance of a PROCEDURE- or CLASS-body, "textually enclosing"

means containing its declaration.

Section: 2.6.7

System/360 SIMULA Page: 5
Level: 0
USERS GUIDE Date: 5/u-1971

Originator:GB

Instantaneous qualification

Let X represent any simple reference expression, and let C and

D be class identifiers such that D is the qualification of X.

The qualified object "X QUA C" is then a legal object expression,
provided that C includes D or is a subclass of D. Otherwise,
i.e. if C and D belong to disjoint prefix sequences, the quali-

fied object is illegal.

The evaluation of X QUA C at run time gives an error if the
value of X is NONE, or an object belonging to a c¢lass not in-
cluded in C. Otherwise the value of X QUA C is that of X.

(Note the qualification of X is D, whilst that of X QUA C is C).

Section: 2.6.8

System/360 S I M U L A Page: 1
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

6.8 TEXT EXPRESSIONS AND TEXT VALUES
A TEXT-expression is a rule for computing a reference to a
TEXT object. A TEXT-value is a rule for computing the value

of a text (i.e. string of characters).

TEXT-expression

simple-text—-expression
IF-clause simple-text-expression ELSE TEXT—expression}‘

simple-text—-expression

r~

NOTEXT
TEXT-variable
TEXT—function-designatorr

A

L(TEXT—expre581on) J

TEXT-value

simple-text—-expression
TEXT-constant

System/360

Section: 2.6.8

" Page:
SIMULA age 2
. Level: 0
USERS GUIDE . . Date: 5/4-1971
Originator:GB
Examples:
valid

TEXT-expression

"TEXT-value

invalid

————

‘NOTEXT

IF T.LENGTH < 5 THEN NOTEXT ELSE BLANKS(80)
(RUNE.T)
T.SUB{1,12)

"ANOTHERUCONSTANT
NOTEXT

IF T.LENGTH < 5 THEN "MAXFOUR"
ELSE "FIVE"

TEXT-constants may not be constituents of

conditional expressions.

: Section: 2.7
System/360 SIMULA Page: 1
' Level: 0
USERS: GUIDE - Date: 5/4-1971

Originator:GB

7. BLOCKS AND STATEMENTS

A program is structured into blocks. A block consists of .a
block head which defines properties of the block, and a com-
pound tail which defines the actions of the block. A block
may be prefixed which means that the block is built into a

predefined environment.

There is no way for a block environment to interact with an
inner block (i.e. examine its current state). The environment
can only observe the result of its actions. A block may only
be entered through its initial BEGIN and attempts to do so by
GOTO statements are thus illegal. '

Section: 2.,7.1

System/360 :
ystem SIMULA iagel 1
evel: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

7.1 BLOCKS AND COMPOUND STATEMENTS

Qrogram

{block
compound-statement

block

{prefixed—blocf}
main-block

prefixed-block

{main—block }

CLASS-identifier [actual-parameter-list] compound-statement

main-block

BEGIN {declaration;}...[statement;]... [statementlEND

compound-statement

BEGIN [statement;]...[statement]END

A block automatically introduces a new level of nomenclature.
Any identifier may be declared or appear as a label in the
block and is then said to be local to it. An entity repre-
sented inside a block has no exXistence outside it and any en-
tity represented by this identifier outside the block cannot
be directly accessed by use of it (see the explanation of the

binding rule in section 3).

Section: 2.7.1

System/360 STMULA Page: 2
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

When a block is prefixed, the identifiers declared in the
corresponding CLASS are made available. Nevertheless, an
identifier in the CLASS may be redefined in the main-block or

compound-statement.

The execution of a block is as follows:

step 1: 1if the block is prefixed then the actual parameters
if any are evaluated.

2: if the declarations of the block contain array bounds
then these are evaluated. (They may make reference
to parameters of the prefix).

3: Execution of the statements body begins with the first
statement of the prefix, if any, otherwise with the
first statement of the main block. After execution
of the block body (unless it is a GOTO statement)

a block exit occurs and the statement textually

following the entire block is executed.

A CLASS identifier possibly followed by an actual parameter

list can prefix a main-block or compound-statement. This re-
sults in concatehating the object of the stated class with

that main-block or compound-statement, which means that the capa-
bilities of the stated class and its including classes are avail-

able within that main-block or compound statement.

When an instance of a prefixed block is generated, the formal
parameters of the class are initialised as indicated by the
actual parameters of the block prefix. A virtual quantity is
identified by the quantity defined by a matching declaration in
the block head of the main-block or compound-statement, or by
the matching definition at the innermost prefix level of the
prefix sequence. The operation rule of the concatenated object

is defined by principles similar to those given in section 5.5.

Section: 2.7.1

. P : 3
System/360 S I M U L A | Lagel X
evel:
USERS GUIDE ‘ Date: 5/4-1971

Originator: GB

A prefixed-block plays a particular role in the quasi-parallel

sequencing of SIMULA: it defines a quasi-parallel system, a
system whose components have interactions independent from the

program outside the prefixed block, see PART 3.

The following restrictions must be observed when prefixing
blocks:

An object in which reference is made to the object itself

through use of THIS is an illegal block prefix.

The CLASS-identifier of a prefix must refer to a class local
to the smallest block enclosing the prefixed block. If that
CLASS-identifier is that of a system class, it refers to a

fictitious declaration of that system class occurring in the

block head of the smallest enclosing block.

A compound-statement is a means of grouping several statements

together to act as one unit, as in

FOR I := 1 STEP 1 UNTIL 10 DO
BEGIN SUM := SUM + A(I);
SUMSQ := SUMSQ + A(I)#A(I);
END

where the controlled-statement is a compound-statement,

or of legalising a statement structure

IF X > 0 THEN BEGIN IF Y > 0 THEN QUADRANT := 1;
END

The structure is illegal without the BEGIN - END pair.

Section: 2.7.2

System/360 SIMULA Page: 1
' Level: 0
USERS GUIDE ' Date: 5/4-1971

Originator: GB

7.2 STATEMENTS

A statement is a unit of action in a program. Sequences of
statements may be grouped together to form compound statements

or blocks.

Special notice must be taken of conditional statements which
effectively prevent a certain ambiguity from arising. For con-
sider

IF conditionl THEN IF condition2?2 THEN S2 ELSE S3

which has two interpretations

1) IF conditionl THEN |ITF condition?2 THEN S2 ELSE S3

2) IF conditionl THEN |IF condition2 THEN S2 |ELSE S3

This ambiguity is resolved by not allowing a conditional state-
ment to follow the THEN symbol. Now the two meanings are re-

solved by writing

1) IF conditionl THEN
BEGIN IF condition2?2 THEN S2 ELSE S3 END

2) IF conditionl THEN BEGIN IF condition2 THEN S2 - END
ELSE S3

Section: 2.7.2

System/360 S I M U L A Page: 2
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

The same sort of ambiguity can arise with a WHILE-statement,

a FOR-statement, or a connection statement following a THEN.

IF conditionl THEN
WHILE J < 10 DO
IF conditilion?2 THEN S1 ELSE S?2

IF condition3 THEN
INSPECT X DO
IF conditioni4 THEN S3 ELSE Sy

Here the syntax forces the ELSE-branch to belong to the nearest

THEN, Dbut means that whereas we can write

WHILE-statement
IF condition THEN FOR-statement

connection-statement R
we can not write

WHILE~-statement
IF condition THEN FOR-statement ELSE S

connection statement

In this case, BEGIN - END are necessary round the WHILE-, FOR-,

or connection-statement.

System/360 SIMULA

USERS GUIDE

Section: 2.7.2

Page: 3
Level: 1
Date: 5/4-1971

Originator: GB

statement .

.Jopen
closed

LIF—Statement
open

FOR-statement
[label:]... < WHILE-statement

connection-statement
closed

(block S
compound-statement

activation-statement
[label:]...ﬁ dummy-statement
GOTO-statement

assignment-statement

PROCEDURE~statement g

\object—generator
label

LABEL-identifier

Section: 2.7.2

System/360 S I M U L A Pagé: y
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:gp

ASSIGNMENTS

Assignment-statements assign the value of an expression to

one or several variables or procedure identifiers. Assignment
to -a procedure identifier may occur only within the body of
the function procedure defining the value of that function.

The process of assignment takes place in three steps:

1) any subscript expressions in the left variables are evalu-

ated in sequence from left to right
2) the expression is evaluated

3) the value of the expression is assigned to the left part
variables from right to left (see example below under Types).

assignment-statement
value-assignment
reference-assignment

value-assignment

variable :=
PROCEDURE-identifier := ... value-expression

TEXT-function-designator :=

Examples:
X t= 3.45 .
C := D(I) := '+!
P.X := R.X + S.X
T := "MESSAGE" |
T.SUB(1,5) := S := "123u5"
Y := IF X > 0 THEN X ELSE ~X

Section: 2.7.2

System/360 SIMULA : Page: 5
' Level: 0
USERS GUIDE Date: 5/4-1971

Originator:gp

TEXT-value-assignment

Consider the TEXT-value-assignment

“let the length of R be Lr and the length of T be Lt. The

assignment is legal if Lr >= Lt, otherwise a run time error

results.
Lr = Lt the text value of T is copied into R
Lr > Lt The text value of T is copied into R left justified

and the remaining Lr-Lt positions are filled with
blanks

Assignments to overlapping texts are unpredictable.
e.g. with

T.SUB(10,10) := T.SUB(15,10)
or T.SUB(15,10) := T.SUB(10,10)

The value assignment
T := NOTEXT

sets the value of T to blanks.

Section: 2.7.2

System/360 S I M U L A Page: 6
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

nges

The type of the expression and all the left part variables
or PROCEDURE-identifiers must be identical except in the case

of arithmetic assignments. In this case, the assignment

VvVl 13 V2 1T Laea.. vn := expression is

equivalent to

vn := expression
vn-1l := vn
vl 1= v2

So that if X is REAL and I INTEGER,

X := I 1= 3.57

"
=
)

and

I := X := 3.57

is equivalent to

<
"

3.57;
I := 4

Section: 2.7.2

Sys‘tem/360 S I M U I_ A Page: 7
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

GOTO-STATEMENTS

A GOTO statement interrupts the normal sequence of operations.
The value of a designational expression indicates the value of

the label of the next statement to be executed.

GOTO=-statement

GOTO designational-expression

Examples:

GOTO L

GOTO S(&)

GOTO S(IF N=0 THEN 2 ELSE 6)
GOTO IF N=0 THEN L1 ELSE L2

A GOTO statement may not lead into

connection statement

block which is not already active
FOR-statement

WHILE-statement

pop o

A GOTO statement leaving an attached object leaves the object

in the terminated state.

When the value of a designational expression is a switch with
an undefined value (the index is out of range), the GOTO state-

ment is equivalent to the dummy statement
e.g. ‘
;G0TO S(-1); is equivalent to

b b

Section: 2.7.2

System/360 SIMULA Page: 8
’ Level: 0
USERS GUIDE Date: 5/4-1971

Originator:; GB

Examgle:

The program below prints out the first three verses of
"The Twelve Days of Christmas". The program logic is built
around a SWITCH.

BEGIN SWITCH CASE := LINEl, LINE2, LINE3;
INTEGER VERSE;
TEXT ARRAY T(1:3);

T(1) :- COPY("FIRST");
T(2) :- COPY("SECOND");
T(3) :- COPY("THIRD");

IF_WE_USE_FOR _HERE_THE LABELS_BECOME_INVISIBLE:
VERSE := VERSE + 1;

OQUTTEXT("ONLTHEL") ; OUTTEXT(T(VERSE));
OUTTEXT ("uDAYuLOFLCHRISTMAS"); OUTIMAGE;
OUTTEXT("MYuTRUEWLOVELSENTWTOWME") ; OUTIMAGE;
GOTO CASE(VERSE);

LINE3: OUTTEXT("THREEWFRENCH.HENS");
OUTTEXT("TWOWIURTLELDOVES ,uAND") ;
OUTTEXT("AUWPARTRIDGEUWINWAULPEARUTREE") ;
EJECT(LINE + 2);

IF VERSE < 3 THEN
GOTO IF WE USE FOR HERE THE_LABELS BECOME INVISIBLE;
END

Section: 2.7.2

System/360 S I M U L A Page: 9
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

OUTPUT:

ON THE FIRST DAY OF CHRISTMAS
MY TRUE LOVE SENT TO ME
A PARTRIDGE IN A PEAR TREE

ON THE SECOND DAY OF CHRISTMAS
MY TRUE LOVE SENT TO ME

TWO TURTLE DOVES, AND

A PARTRIDGE IN A PEAR TREE

ON THE THIRD DAY OF CHRISTMAS
MY TRUE LOVE SENT TO ME

THREE FRENCH HENS

TWO TURTLE DOVES, AND

A PARTRIDGE IN A PEAR TREE

Section: 2.7.2

System/360 S I M U L A Page: 10
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

DUMMY STATEMENTS

A dummy-statement executes no actions. Its main use is to

place a label before an END

dummy statement

ExamEles:

IF X > 0 THEN ELSE X :=. =-X3

BEGIN LAB : END;

USERS GUIDE

Section: 2.7.2

Page: 11
Level: 0
Date: 5/4~1971

Originator: GB

WHILE STATEMENTS

The WHILE-statement is used when a statement 1s to be executed

while a condition is TRUE.

WHILE-statement

Examples:

WHILE condition DO statement

WHILE =~ LASTITEM DO
BEGIN X := ININT;
COUNT := COUNT + 1;
SUM := SUM + X;
END;

WHILE X =/= NONE DO
BEGIN IF X IN POINT THEN NOP

IF X IN LINE THEN NOL
ERROR("FALSEGENTRY")

X := X.SUC;
END;

NOP + 1 ELSE
NOL + 1 ELSE

Section: 2.7.2

S ' Page: 12
ystem/360 SIMULA Lagel ;
' s evel:
USERS GUIDE Date: 5/4-1971

Originator:GB

ACTIVATION STATEMENTS

Activation statements are only valid inside a SIMULATION
block. They are fully described in part 3, section 3.

Section: 2.7.2

System/360 SITMULA Page: 13
' Level: 0
USERS GUIDE . Date: 5/4-1971

Originator:@r

FOR STATEMENTS

FOR-statements are control statements which cause controlled-

statements to be executed zero or more times.
There are three basic types of FOR statement element.

1) +the controlled-statement i1s executed for a list of values

(usually irregular).

FOR I := 2, 13, 17 DO controlled~-statement

2) the controlled-statement is executed a known number of

times

FOR I := 1 STEP 1 UNTIL lQ DO
X(I) := I«I ‘

3) the controlled-statement i1s executed until a condition'

is met

FOR X :- X.SUC WHILE X =/= NONE DO
X QUA LINK.,OUT

To increase the generality of the concept, these elements

themselves are allowed to form a list

FOR I := 1, 2, 4 STEP 1 UNTIL 10, I#I WHILE I < 200 DO

" controlled statement

Section: 2.7.2

S 3 Page: 1y
ystem/360 SIMULA Lagel :
evel:
USERS GUIDE Date: 5/4-1971

Originator: GB

FOR-statement

[1abel:1... FOR controlled-variable for-right-part DO

controlled statement

for-right-part

{:: value-element [,value~element] }

:- object-element [,object-elementl

value-element

r -

value-expression

arithmetic-expression STEP arithmetic—expressionL
UNTIL arithmetic-expression

value-expression WHILE condition
- w/

object-element

{object—expression
object-expression WHILE condition

Each execution of the controlled statement is preceded by
an assignment to the controlled-variable. Assignments may
change the value of this controlled variable during execution

of the controlled-statement.

Section: 2.7.2

System/360 SIMULA ' Page: 15
Level: 0
USERS GUIDE . Date: 5/4-1971

Originator: GB

for list elements

The for list elements are considered in the order in which

they are written. When one for list element is exhausted, con-
trol proceeds to the next, until the last for list element in
the list has been exhausted. Execution then continues after

the controlled statement.

The effect of each type of for list element is defined below

using the following notation:

controlled variable
value expression
object expression
arithmetic expression

Boolean expression

mw w>r O < O

controlled statement

The effect of the occurrence of expressions in for list ele-
ments may be established by textual replacement in the defi-

nitions.

Section: 2.7.2

System/360 S I M U L A Page: 16
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

o» B, o are different identifiers which are not used elsewhere
in the program. ¢ identifies a non-local simple variable of

the same type as A2.

next for list element

2. Al step A2 until A3
C := Al;
g := A2;
a : if o *(C-A3) > 0 then goto B8;
S3
g := A2;
C = C + o3
goto aj

B : next for list element
3. V while B

a : C := Vy
if 71 B then goto B;
S3
goto o3

B : next for list element

Seetion: 2.7.2

Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

C := 0;
SN

next for list element

0 while B

C :- 0;

if =4 B then goto B;
S3

goto O3

next for list element

Section: 2.7.2

Level: 0
USERS GUIDE Date: 5/4-1971

r

Originator:GB

The controlled variable

The controlled-variable is a simple~variable which is not a
formal-parameter called by name, a PROCEDURE-identifier, a

remote-identifier nor a TEXT-identifier.

To be valid, all for 1list elements in a for statement must

be semantically and syntactically valid.

In particular each implied assignment is subject to the rules

of section 7.2.1.3.

The value of the controlled variable upon exit

Upon exit from the for statement, the controlled variable will
have the value given to it by the last (explicit or implicit)

assignment operation.

Labels ‘local to the controlled statement

The controlled statement always acts as if it were a block.
Hence, labels on or defined within the controlled statement

may not be accessed from without the controlled statement.

¢ Section: 2.7.2

System/360 SITMULA Page: 19
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

PROCEDURE STATEMENTS
A procedure-statement calls for the execution of the PROCEDURE-
body. Before execution, the formal-parameters of the procedure

are replaced by the actual-parameters.

PROCEDURE-statement

[simple-object-expression.] PROCEDURE~identifier [(expression

[, expressionl...)]l

Examples:

INTO(H)
OUTTEXT (" #*#(##x")
SYSIN.,INIMAGE

The procedure statement must have the same number of actual
parameters in the same order as the formal-parameters of the

procedure heading.

Restrictions

1) An actual-parameter corresponding to a formal-parameter
called by NAME which is assigned to within the PROCEDURE-

body must be a variable.

2) If the formal-parameter is an ARRAY (PROCEDURE), then the
number of dimensions (actual-parameters) used within the
PROCEDURE-body must correspond to the number of dimensions
(actual-parameters) of the actual ARRAY (PROCEDURE).

) Section: 2.7.2

System/360 SITMULA Page: 20
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

CONDITIONAL STATEMENTS
Conditional statements cause certain statements to be executed
or skipped depending on the current values of certain conditions.

They provide an important structural framework in the language.

IF-statement

f
r WHILE-statement 3

FOR~statement

IF-clause connection-statement

~

o
[label:]... Lclosed

IF-clause closed
ELSE statement =

ExamEles:

L: IF X > 0 THEN X := -X;

IF X = 0 AND Y = 0 THEN
L: BEGIN OUTTEXT("ORIGIN");
OUT IMAGE;

END;

X :=Tg
WHILE X =/= NONE DO
BEGIN IF X QUA PERSON.MALE THEN MAN := MAN + 1
ELSE WOMAN := WOMAN + 1,
X := X.SUC;
END;

Section: 2.7.2

System/360 S I M UL A Page: Co21
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

The statement sequence
IF condition THEN S1; S2
is equivalent‘to

(evaluate condition) S1; S2 if the condition is TRUE

(evaluate condition) S2 if the condition is FALSE.
The statement sequence

IF condition THEN S1 ELSE S2; T
is equivalent to

(evaluate condition) S1; T if the condition is TRUE, and

(evaluate condition) S2; T if the condition is FALSE.

A GOTO statement may lead directly into a conditional statement

e.g

IF B THEN BEGIN OUTTEXT("TRUE");

L: OUTIMAGE;
END
ELSE BEGIN OUTTEXT("FALSE");
GOTO L;

END

Section: 2.7.2

System/360 STMULA Page: 22
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

CONNECTION STATEMENTS

Connection-statements are a form of remote accessing which
are mainly used as a user convenience if there are to be many

accesses to a particular object.

e.g.
we may replace
SYSBIN.INIMAGE;
X := SYSBIN.INREAL;
Y := SYSBIN.INREAL;
C := SYSBIN.INCHAR;
by

INSPECT SYSBIN DO
BEGIN INIMAGE;

X := INREAL;
Y := INREAL;
C := INCHAR;

END

Section: 2.7.2

System/360 SIMULA Page: 23
‘ Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

Connection statement

statement
INSPECT object-reference DO § [WHEN CLASS-identifier DO statement]...
[OTHERWISE statement]

ExamEles:

INSPECT SYSOUT DO

BEGIN OUTTEXT("TITLE");
bUTIMAGE;
EJECT(LINE+10);

END;

INSPECT X WHEN A DO OUTTEXT("X IN A™)
WHEN B DO OUTTEXT("X IN B")
OTHERWISE OUTTEXT("ERROR");

INSPECT X DO
INSPECT Y DO P := Q
OTHERWISE OUTTEXT("Y==NONE");

To avoid ambiguity, an OTHERWISE refers back to the nearest
INSPECT.

The remote accessing of objects of classes may be accomplished

by the dot notation or by connection. In most cases the methods
are interchangeable if the object contains a class attribute at
a certain level, then attributes at that level and levels inner

to it can only be accessed by connection.

N

Section: 2.7.2

System/360 S I M U L A Page: 24
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

To

1
2)
3)

The

1)

access an attribute of an object we have to know:

a reference to the object
the qualification of the reference

the attribute identifier.

two variations are now explained:

a) INSPECT X DO S1 OTHERWISE S2
b) INSPECT X DO S1

If X =/= NONE then the statement Sl is executed. During
execution of this statement the reference variable of X is
evaluated once and stored. Access is now gained to the
denoted object at the qualification level of X. All attri-
butes of the qualifying class are now available by the

occurrence of their identifiers.
If X == NONE, then the statement S1 is skipped and the
statement S2 is executed in case a), and the whole connection

statement is skipped in case b).

In an otherwise branch, no connection holds.

e.g.
CLASS Aj
BEGIN REAL X; END;
A CLASS B |
.~ BEGIN BOOLEAN Y; .. END;
REF(A)Q; REF(B)Z;
INSPECT Q DO INSPECT Q QUA B DO
BEGIN X := 2; BEGIN X := 23
THIS B.Y := FALSE; Y := FALSE;
Z :- NONE; Z :- NONE;

END END

Section: 2.7.2

System/360 SITMULA Page: 25
Level: 0
USERS GUIDE- Date: 5/4-1971

Originator:GB

2)

INSPECT X WHEN A DO S1
WHEN B DO S2

OTHERWISE T

This discriminates on class membership at run time. The
when clauses are considered in turn. If X is an object
belonging to a class equal to or inner to the one identified
in the clause then the associated statement is executed and
the rest of the connection-statement is skipped. The
OTHERWISE-clause (if present) is only executed of X == NONE
or all preceding WHEN clauses are skipped.

Section: 2.7.2

Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

OBJECT GENERATORS

Object-generators were discussed in section 6.5. They may
also stand as statements in their own right, in which case
their reference value is not assigned on exit. This does not
mean that they cannot be referenced as the following example

shows:

LINK CLASS B(H); REF(HEAD)H;

BEGIN PTR :- THIS B;
INTO(H) ;

END

After execution of the statement

NEW B(HD);

then the generated object is referenced by PTR and HD.LAST
(if H =/= NONE).

