Section: 2.1

System/360 SIMULA Page: 1
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

PART 2 THE SYNTAX AND SEMANTICS OF SIMULA

1 METHOD OF SYNTAX SPECITICATION

When a SIMULA construction and all its variants can not be
economically described in words, its exact range will be
shown using a system of notation which is standard through-
out Part 2.

The notation is not in itself a part of SIMULA, nor restricted
solely to SIMULA. It may be used to describe the syntax (or

allowable constructions) of any programming language, and pro-
vides a compact, visually clear and precise explanation of the
general patterns that the language permits. It is important

to realise that it does not describe the meaning of these con-
structions (their semantics), only their structure. In other

words, it indicates:

- the order in which language elements may or must be

combined with each other,
- the punctuation that is required, and

- the full range of options.

No such convenient shorthand is yet available for the semantics,
so that the interpretation of a legal construction has to be

described in words.

We begin by noting that various patterns of basic symbols con-
tinually recur in SIMULA. Instead of repeating the listing of
the basic symbols each time, they are first grouped together

as a named syntactic variable, and from then on we need use only

Secticen: 2.1

~

System/360 SITMULA Page: 2
Level: 0

Date: 5/4-1971
Originator:GB

USERS GUIDE

that name. The idea extends itself that further syntactic vari-
ables may now be defined in terms of those already defined and

possibly basic symbols.

The SIMULA basic symbols are represented by special characters,

such as

by combinations of special characters, such as

and by key words in capital letters, such as

PROCEDURE CLASS REAL BEGIN

When we define a syntactic variable, its name will usually be

written in lower case letters for distinction:

e.g block statement digit

A certain ambiguity can arise when the name of a syntactic vari-

able consists of two words, such as

prefixed block
To ensure that these are interpreted as one syntactic unit and
not for example, an occurrence of a syntactic variable named

"prefixed" followed by a syntactic variable named "block", a

hyphen is inserted between the words, as:

prefixed-tlock

Section: 2.1

System/360 S I M U L A Page: '3
Level: 0

USERS GUIDE
Originator:GB

In certain cases, when a basic 'symbol is an integral part of
a syntactic variable, it is clearer to use upper-case letters.
Again, we avoid possible ambiguities by following the upper-

case letters by a hyphen:
e.g. FOR~statement GOTO~-statement

We now give two examples to show the uniqueness of interpre-

tations using this technique:

1) IF BOOLEAN-expression THEN
denotes an occurrence of the basic symbol "IF" followed
by a "BOOLEAN-expression'" followed by an occurrence of

the basic symbol "THEN".

2) REF(CLASS-identifier)
denotes an occurrence of the basic symbol "REF" followed

by an occurrence of the left parenthesis "(" followed by

Date: 5/4-1971

a "CLASS-identifier" followed by an occurrence of the right

parenthesis ")". The separation between "REF" and " ("
occurs because if a basic symbol is a key word it may only

be composed of capital letters.

Bearing these in mind, the following rules explain the use of

the notation as applied to SIMULA.

Secticn: 2.1
System/360 SIMULA Page: i

Level: 0

Date: 5/4-1971

USERS GUIDE
Originator: GB

1. A syntactic variable is a general class of elements in

SIMULA. The name of the syntactic variable must consist
of:

a. lower-case letters
lower-case letters separated by hyphens

lower-case letters followed by a digit

e.g. identifier
compound-statement
identifierl

simple-object-expression

b. a combination of upper-case letters and lower-case
letters. There must be one portion of all upper-case
letters and at least one portion of all lower-case

letters separated, one from another, by hyphens:

e.g. PROCEDURE-statement

All such units used in this section are defined either formally

using this notation or else in words.

Section: 2.1

System/360 SIMULA Page: 5
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator:GB

2. A basic symbol denotes an occurrence of the characters

represented. A basic symbol is either a key word or

else one or more special characters

e.g. BEGIN END
+ :/:

N.B. When a basic symbol consists of more than one

character no intervening spaces may appear.

Thus, for example,

BEG IN =/ =

are both faulty representations.

Section: 2.1

System/360 STMULA Page: 6
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

The term syntactic unit, which is used in subsequent rules,

is defined by

a. a single syntactic variable or basic symbol, or

b. any collection of syntactic variables, basic symbols,
syntax-language symbols (the symbols [, 1, {, I}, byon.
whose uses are defined in subsequent rules) surrounded
by braces or brackets.

Examples:

digit|letter

[digit]
letter

digit

{digit}...

Section: 2.1

Level: Q
Date: 5/4-1971

USERS GUIDE o
Originator: GB

Braces { } are used as group markers.

Example: the definition of an object-relation is

object-relation

simple-object-expression {%g} CLASS-identifier

The vertical stacking of syntactic units indicates the

range of available choices of which exactly one must be
taken. The example shows that in an "object-relation®,

a "simple-object-expression" must be followed by the literal
occurrence of either "IN" or "IS" (but not both) and then

by a "CLASS-identifier".

Secticn: 2-41

System/360/ S I M U L A : Page: 8
Level: 0
Date: 5/”‘“1971

USERS GUIDE
Originator: GB

The vertical stroke | indicates alternatives.

Example: the definition of a digit is
digit

ol1]2]|3|u|s5|6|7]8]9
This has precisely the same interpretation és

o

st

»J

(@]

[ColR

O

but saves considerable space. Both the methods, rule U

({ }) and rule 5 (|) are used in this manual to display
alternatives. We will usually stick to the use of braces
as this notation is clearer, and use | only when the former

notation takes up too much space.

Section: 2.1
System/360 SIMULA Page: . g :

Level: 0

Date: 5/4-1971

USERS GUIDE.
Originator: GB

Square brackets [] denote options. Anything enclosed

in square brackets may appear once or not at all.
Examples: the definition of a CLASS-declaration is

CLASS-declaration

[CLASS-identifier] main-part

This denotes a syntactic unit "main-part" optionally pre-

ceded by a "CLASS-identifier".

If alternatives are also optional, we use vertical stacking

within the square brackets, and omit the braces.

Thus the much simplified version of an activation-state-

ment

would allow the following alternatives:

ACTIVATE X

ACTIVATE X BETORE Y
ACTIVATE X AT time
ACTIVATE X AT time PRIOR

o . . Section: 2.1

Level: ~ 0o
USERS GUIDE Date: 5/4-1971

Originator:gs

Three dots ... denote the occurrence of the immediately
preceding grouping one or more times in succession.
Examples:

The definition of digits is:

digits

digit ...
denoting the occurrence of at least one digit such as
1
0935
1970

The definition of a compound-statement is:

compound-statement

BEGIN [statement ;]... [statement] END
examples of which are
BEGIN END
BEGIN statement END
BEGIN statement;
statement;

statement;
END

Section: 2.2

Systemf:iﬁﬂ S 1 M u L A Page: 1
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator:GB

2 BASIC SYMBOLS AND SYNTACTIC VARIABLES

A program written in SIMULA may contain only

basic symbols
identifiers

constants

Apart from CHARACTER-constants, TEXT-constants and comments
where extra latitude is allowed, a program must contain only

characters belonging to the language character set. These

are either alphanumeric characters, special symbols or key

words. Examples of special symbols are

which have obvious interpretations. In addition, SIMULA needs
many other special symbols and, instead of using peculiar com-
binations of special characters for their representation, SIMULA
uses key words (always written in upper-case letters), such as
BEGIN, CLASS. These key words are reserved within the language

and may be used only as key words.

Section: 2.2.1

Systeﬁ/360 SITMULA Page: 1

Level: 0
Date: 5/4-1971

USERS GUIDE.
Originator: GB

2.1 LANGUAGE CHARACTER SET

The SIMULA basic symbol set is built up from a character set of

alphabetic~characters
decimal-digits

special-characters

There are 26 alphabetic-characters - the capital (upper-case)

letters A through Z.

There are 10 decimal-digits - the digits 0 through 9.

An alphanumeric-character is either an alphabetic character or

a decimal digit.

The 21 special-characters may have an independent meaning within

the language (such as + or -) or may be used in combinations
(such as := or =/=). Their names and the graphics by which

they are represented are:

name graphic

blank or space

plus

minus

asterisk or multiply

divide

equals

greater than

less than

not

comma

dot or period

exponent &

colon

semicolon ;

dollar $

left parenthesis (
)
1

ev g AV LN H 1 +C

right parenthesis
character quote
text quote

hash R
underscore

Section: 2.2.2

System/360 SIMU L‘A : s Page: 1
: ' Level: 0
Date: 5/4-1971

USERS GUIDE L.
Originator: GB

2.2 BASIC SYMBOLS

Any program written in SIMULA may contain only alphanumeric
characters and the 19 .special characters, éxcept within

CHARACTER~ or TEXT-constants and comments (see DATA CHARACTER

SET section 2.3). Certain combinations of these allowable charac-

ters have special significance and are called basic symbols.

They fall into two classes:

delimeters

key-words

delimiters

The delimiters used by the language are divided into 6
types:

a) arithmetic-operators

b) logical-operators

c) brackets

d) reference-comparators
e) vrelational-operators

f) separators

Section: 2.2.2

System/360 STMULA Page:)
Level: 0
Date: YATER N
USERS GUIDE ares 5/4-1971
Originator: GB
a) arithmetic-operators -

b)

The arithmetic-operators are:

+ denoting addition or unary plus
- denoting subtraction or unary minus

denoting multiplication

/ denoting division
E T denoting "raised to the power of"
// denoting integer division

Note that // may not appear in columns 1-2 (or else

that card would be interpreted as.a control card).
logical -operators

The five logical-operators denoting NOT, OR, AND,

EQV and IMP (the last two representing egquivalence
and implication respectively) are represented by
key words. In the case of NOT there is the alter-

native representation '='.

Section: 2.2.92

System/360‘ S l " u L A Page: 3
Level: o
USERS GUIDE Date: 5/4-1971
Originator: ;p
c) Dbrackets

d)

e)

The bracketé are:

which are used in expressions, and for enclosing

parameter lists and array bounds

"

reference-comparators

encloses character constants

encloses text constants

The reference-comparators are:

=/= denoting reference not equal to

relational-operators

= denoting reference equal to

The relational-operators have dual representations

as key words and symbol combinations

= (or
a= (or
> (or
>= (or
< (or
<= (or

EQ)
NE)
GT)
GE)
LT)
LE)

denoting
denoting
denoting
denoting
denoting

denoting

equal to
not equal to
greater than
greater than
less than

less than or

or equal to

equal to

Section: 2.2.2

: Level: 0
Date: 5/4-1971

USERS GUIDE .
Originator:GB

f) separators

name graphic use
comma) separating elements in lists
dot . denoting decimal point in

REAL numbers;

remote accessing

colon 5 follows labels;
follows VIRTUAL;
separates array bounds in

array declarations

becomes := in value assignments
denotes i- in reference assignments
semicolon 5 separates declarations and

statements;
separates various parts of

procedure and class headings

dollar $ may be used instead of a
semicolon

blank u used as a separator

hash # precedes a hexadecimal con-
stant

underscore used in identifiers

(e.g. RATE_OF PAY)

Section: 2.2.2

System/360 SIMULA Page: 5
Level: 0
Date: 5/4-1971

USERS GUIDE . .
Originator:GB

kez—words

A key-word is an identifier which is a part of the language
and its use is reserved for that purpose. Key-words may

be classified as follows:

a) statement-brackets
b) declarators

c) specificators

d) operators

e) key-word-constants

a) statement-brackets

The statement-brackets are:

BEGIN
END

which are used to demark the limits of blocks and

compound statements.

Section: 2.2.2

Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

b) declarators

The declarators are:

BOOLEAN
CHARACTER
INTEGER

SHORT INTEGER
REAL

LONG REAL
TEXT

REF (CLASS-identifier)
CLASS
PROCEDURE
SWITCH

ARRAY

which are used in declarations and specification
lists. The key words SHORT and INTEGER, LONG and

REAL must be separated by at least one space, as

SHORT {u. ..} INTEGER
LONG {u...} REAL

c) specificators

The specificators are:

LABEL
NAME
VALUE
VIRTUAL

which are used in specification parts to procedures
(LABEL, NAME, VALUE) or to classes (VALUE, VIRTUAL).

Section: 2.2.2

System/360 S I " U L A Page: 7
Level: 0
Date: . 5/4-1971

USERS GUIDE L.
Originator: GB

d) operators
The operators are divided into 3 classes:

logical-operators
relational-operators

sequential-operators

The logical-operators are:

AND denoting the logical and

OR denoting the logical inclusive or
NOT (or =) denoting logical negation

EQV denoting logical equivalence

IMP denoting logical implication

The relational-operators are:

EQ (or =) denoting equal to

NE (or ==) denoting not equal to

GT (or >) denoting greater than

GE (or >=) denoting greater than or equal to
LT (or <) denoting less than

LE (or <=) denoting less than or equal to

The sequential-operators are:

GQOTO

used in GOTO-statements. GOTO may also be
written GO{w...} TO (with any number of blanks
between GO and TO, which means that GO and TO

are also reserved words),

Section: 2.2.2

System/360 SIMULA Page: 8
’ Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

FOR

STEP

UNTIL

WHILE

DO

used in WHILE- and FOR-statements (DO also

appears in connection-statements),

IF

THEN

ELSE |

used in conditional-statements and conditional-

expressions,

INSPECT

WHEN

DO

CTHERWISE

used in connection-statements. (DO also appears
in WHILE- and FOR-statements),

ACTIVATE
REACTIVATE
DELAY
AFTER
BEFORE

AT

PRIOR

used in activation-statements,

INNER
used in CLASS-bodies to alter the order of
execution of statements from their textual

order,

System/360

Section: 2,2.2

SIMULA Page: 9

Level: 0

USERS GUIDE Date: 5/4-1971
Originator: gp

NEW

is used in generating objects,

THIS ,

THIS CLASS~identifier

represents a reference to the nearest textually
enclosing object of a class equal to or inner
to that of the CLASS-identifier,

QUA

defines the scope of a reference expression,

IS
IN

used to test class membership,

COMMENT

used to insert descriptive text among the

basic symbols of a program.

The key-word-constants are:

TRUE
FALSE

represent logical values,

NONE

represents the "no object reference",

NOTEXT
represents either the empty text value or

no text object.

Section: 2.2.3

' Level: 0
Date: 5/4-1971

USERS GUIDE
Originator:GB

2.3 DATA CHARACTER SET

Although the language character set is a fixed set defined for
the language, the data character set has not been limited.
Data may be represented by characters from the language set

plus any other EBCDIC characters.

Collating sequénce

The 256 members of the data character set have associated with
them a unique INTEGER value in the range 0-255. This sequence
is known as the collating sequence. It is thus possible to make
comparisons of CHARACTERs meaningful by comparing the associated

numerical values, such as

AT < B!
INCHAR = 'u'

Parts of the collating sequence are given in Appendix A.

Section: 2.92.y4

System/360 S I M U L A Page: 1
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator:cp

2.4 THE USE OF BLANKS

Identifiers, arithmetic constants, composite operators (e.g. =/=),
key words (e.g. BEGIN) may not contain blanks. Blanks are per-
mitted as CHARACTER-constants and in TEXT-constants.

Identifiers, constants and key words may not be immediately
adjacent. They must be separated by an abithmetic operator,
parenthesis ("(" or ")"), reference comparator, negation (),
non-key-word relatiohal operafor (<,<=,=, =,>,>=,==,=/=), comma,
dot, colon, becomesvsymbol (:=), denotes symbol (:-), semicolon,

or blank. Moreover additional intervening blanks are always

permitted.

Examples:
X + Y is equivalent to X+Y
A (I) is equivalent to A(I)

A =X =Y is equivalent -to A:=X:=Y

Section: 2.2.5

System/360 SIMU LA Page: 1
Level: 0
USERS GUIDE Date: - 5/4-1971

Originator: GB

2.5 COMMENT CONVENTIONS
Comments are used for documentation (the insertion of a textual
description of part of the program) and do not participate in

the execution of a program. The following conventions hold:

Sequence of basic symbols

is equivalent to

any sequence from

the data character - $
set not including 5
a semicolon or dollar

delimiter COMMENT delimiter

any sequence from the data
END 4 character set not including END
END | ELSE | WHEN | OTHERWISE]| ; | $ ‘

Examples:

a) BEGIN COMMENT###THE NEXT BLOCK IS USED FOR PAY-ROLL
CALCULATIONS### ;

BEGIN e o o @ 0
END OF PAY-ROLL BLOCK;

e e o0

END

Where the strings "COMMENT ;" and "OF PAY-ROLL BLOCK"

are treated as comments.

Section: 2.2.5
System/360 - SIMULA Page: 2
- Level: 0
Date: 5/4-1971

USERS GUIDE . .
Originator: GB

b)

c)

IF X > 0 THEN BEGIN
END OF TRUE PART

ELSE BEGIN
END OF ELSE PART;

Where the strings "OF TRUE PART" and "OF ELSE PART"

are treated as comments.

X := X COMMENT##THAT WAS X;##2 COMMENT##SQUARED; ;
is equivalent, as regards program execution, to
X 1= X#%2;

Section: 2.2.6

System/360 : S I M U L A Page: 1
‘ ' Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

2.6 CODING SIMULA PROGRAMS

A SIMULA source program can be written on a standard FORTRAN
coding form (IBM Form No. X28-7327). The program may be written
in free format from column 1 through 72. Columns 73 through 80
are not significant to the SIMULA compiler and, therefore, may

be used for card identification, sequencing or any other purpose.
Except with TEXT-constants, column 72 of a card is not considered
to immediately precede column 1 of its successor so no basic
symbol, identifier nor constant (except a TEXT-constant) may

overlap from one card to the next.

Care should be taken not to punch "//" or "/#" in columns 1-2
of a SIMULA source card as these will be taken to be JOB CONTROL

cards.

Section: 2.3
System/360 SIMULA o Page: 1
' Level: 0

Date: 5/4-1971

USERS GUIDE

Originator: GB

3 IDENTIFIERS

An identifier is a string of alphanumeric or underscore charac-

ters, not contained in a comment or constant, preceded and

followed by a delimiter - the initial letter must always be

alphabetic.

identifier

letter[letter|digitl...[_{letter|digit}...]l...

Examples:

valid identifiers
X

STMULA 67

AlS5

MORGAN PLUS 4

invalid identifiers
END

SYMLBOL

3C

APPLE_

reserved for use as a keyword
contains a blank

does not begin with a letter
underscore cannot appear as the

last character

Section: 2.3

System/360 SIMULA Page: 2
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

~ Length of identifiers

Identifiers in a SIMULA program may be composed of any number
~of alphanumeric or underscore characters, but only the first
twelve are significant. Thus if two identifiers contain the

same first twelve characters they are considered equivalent.

e.g. BIORTHOGONAL and
BIORTHOGONALISATION

will both be treated as occurrences of the identifier
BIORTHOGONAL

Identifiers and key words

It is not possible to use a key word as an identifier. Every
occurrence would be treated as an occurrence of that key word

and its use as an identifier would result in errors.

Basic binding rules

Variables, arrays, switches, procedures and classes are said
to be quantities. Identifiers serve to identify quantities,
or they stand as labels or formal parameters. Identifiers have
no inherent meaning anq may be chosen freely (except that they

may not clash with key words).

Section: 2.3
3

System/360 SIMULA Page:
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator:GB

Every identifier used in a program must be declared. This is

achieved by:

a) a declaration (section 5), if the identifier defines a
quantity. It is then said to be a J-variable, J-ARRAY-,
PROCEDURE-, J-PROCEDURE-, CLASS-identifier where J stands
for the type of the declared quantity.

b) its occurrence as a label (section 5.6) if the identifier
stands as a label. It 1s then said to be a LABEL-identifier.

c) its occurrence in the formal-parameter-list (section 5.4,
5.5) of a PROCEDURE- or CLASS-declaration. It is then said

to be a formal-parameter.

The identification of the definition of a given identifier is
determined by binding rules. The basic binding rules given
below are later extended in the cases of remote accessing
(section 6.1), VIRTUAL quantities (section 5.5), and connection

(section 7.2).

1. 1if the identifier is defined within the smallest block
(section 7.1) textually enclosing the given occurrence by
its occurrence as a quantity or a label, then it denotes

that quantity or label.

The statement following a procedure heading or a class
heading is always considered to be a block, which makes the

binding to formal parameters a special .case.

2. Otherwise if the block is a procedure or a class body and
the given identifier is identical with a formal parameter
in the associated procedure or class heading, then it stands

for that formal parameter.

: : Section: 2.3
System/360 STMULA Page: 4
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

Otherwise, these rules are applied by considering the smallest
block textually enclosing the block which has been previously

considered.

If these steps lead to more than one definition or to no defi-

nition, then the identification is illegal.

Example:

line 1 BEGIN PROCEDURE Aj;
2 X := X + 1;
3 REAL X;
L BEGIN REAL X;
5 X 1= 23
6 LAB: Aj;
7 END;
8 END

The block spanning lines 4-7 is textually enclosed in the block
spanning lines 1-8. The procedure declaration of lines 1-2 is

treated as though it were

PROCEDURE Aj

BEGIN <dummy-declaration>;
X 1= X + 1;

END;

Thus the occurrence of X at line 5 is bound to the declarations
of line 4, whereas in the invocation of the procedure at line 6
the binding rule for the occurrence of X in the procedure body

is to the variable declared at line 3.

The scope of a quantity, label or formal parameter is the set of

statements in which occurrences of an identifier may refer to

its definition by the above rules.

Section: 2.4 .1

System/360 S I M U L A) Page: 1
Level: 0
Date: 5/4-1971

USERS GUIDE i
Originator: GB

4 TYPES AND CONSTANTS

Constants and variables possess values and types. Both the
value and type of a constant are determined by the way it is
written. The value of a variable is the one most recently
assigned to it, or its initial value if no assignment has yet
been made, and its«fype is determined by its declaration.

4.1 TYPES

Type 1is subdivided into two classes by:

type
value-type
reference-type }
where value-type and reference-type are defined by:

value-type

[SHORT] INTEGER
[LONGIREAL
BOOLEAN
CHARACTER

reference-type

{ REF(CLASS-identifier)}
TEXT

Section: 2.4.2

System/360 SIMULA Page: 1
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

4.2 CONSTANTS

A constant is a fixed, unvarying quantity that denotes itself,
i.e. it can not alter during the course of a program. Each
constant has a uniquely defined type. The discussion of con-

stants follows the order:

arithmetic-constants
BOOLEAN-constants
CHARACTER-constants

object-reference-constant
TEXT-constant

Section: 2.4.2

System/360 SIMULA Page: 2
o Level: 0
Date: 5/4-1971

USERS GUIDE .
Originator:GB

arithmetic~constants

arithmetic-constants may be written as decimal-constants

(base 10) or hexadecimal-constants (base 16). Note that

a) the use of arithmetic-constants is optimised by the

system

b) any '+' or '-' sign preceding an arithmetic-constant

is treated separately.

Section: 2.4.2

System/360 S I M u L A ~Page: 3
Level: 0
Date: 5/4-1971

USERS GUIDE .
Originator: GB

decimal-constants

decimal-constants are interpreted according to conventional
notation with '&' representing the exponent sign. If a decimal
constant contains either a decimal point, or an exponent sign,
or both, it is interpreted as a (LONG) REAL number, if it con-
tains neither a decimal point nor an exponent sign, it is taken

to represent a (SHORT) INTEGER number.

decimal-digit

{ol1]2]3]|4]5|6]7]8]9}

decimal-digits

{decimal-digit}...
representing a run of at least one decimal digit.
Examples: 000

1
315730

Section: 2.4.2

System/360 SIMULA Page: Y
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

(SHORT)INTEGER-constant

decimal-digits

The range of values is the set of whole numbers from 0 through

231—1 (= 2147483467). If the magnitude lies in the range O

through 215—1 (= 32767), the constant is treated as a SHORT

INTEGER constant, if the magnitude lies in the range 215 through

231—1, it is treated as an INTEGER constant. If the magnitude
is equal to or exceeds 232, the number is interpreted as a REAL
constant.
Examples:

0 SHORT INTEGER

91 SHORT INTEGER

814728 INTEGER

Section: o 4. 9

System/360 SIMULA Page: 5
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: gp

(LONG)REAL-constants
al N

sdecimal-digits
decimal-digits*decimal-digits exponent

decimal-digits

.decimal-digits

decimal-digits*decimal-digits

exponent

S

where exponent takes the form

exponent
+ . . .
&[;] decimal-digits

i.e. the symbol '&', optionally followed by a '+' or '-' sign,
followed by a SHORT INTEGER-constant. The exponent represents

a scale factor expressed as an integral power of 10.

The range of values of (LONG)REAL-constants is 0 through 1075

(approximately). Any such constant has an equivalent represen-

tation of the form
A& +B

where 0.1 <= A < 1, and B is adjusted accordingly. If in this
form, A requires from 1 through 7 decimal-digits, then the
constant is a REAL-constant. If it requires 8 or more decimal-
digits, then the coﬁstant is a LONG REAL-constant and has a
maximum precision of 16 decimal-digits (any remaining digits

are discarded).

Section: 2.4.2
System/360 SIMULA Page: 6

Level: 0

Date: 5/4-1971

USERS GUIDE
Originator: GB

Examples
N
valid 0.0
999.999
57.6&+21 REAL
el
3&1
&-1
314.1592653
21.2274568&+03} LONG REAL
invalid 3. no digit after the decimal—pdint
3,149.2 embedded comma
33.4& no scale factor

23.4&87 out of range

Secticn: 2.4.2

System/360 SIMULA Page: 7
Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

hexadecimal-constant

#{decimal-digit|A|B|C|D|E|F}...[R]

The hexadecimal digits A through F represent the numbers 10
through 15 respectively. A hexadecimal-constant terminated
by the letter 'R' is interpreted as a REAL number if there

are 8 or less preceding hexadecimal digits.

e.g. #56789R
#BBFFFFFER

If there are 9-16 hexadecimal digits, it is treated as a

LONG REAL constant
e.g. #O0000O0OO0OOQOFFFFFFFFER

A hexadecimal-constant not containing the letter 'R' is
treated as a SHORT INTEGER constant if it contains 4 or less

hexadecimal digits

e.g. #0
4FFFF

or as an INTEGER constant if it contains 5 through 8 hexa-

decimal digits,
e.g. #00FFFFFF

Hexadecimal-constants are taken to be right justified and define

a bit pattern.

Section: 2.4.2

System/360 S I M U L A Page: 8
: Level: 0
Date: 5/4-1971

USERS GUIDE
Originator: GB

BOOLEAN~-constants

These are the key words FALSE and TRUE whose interpretation

is obvious.

CHARACTER-constants are represented by

'{any one member of the data character set}'

Examples:

valid CHARACTER~constants:
'Xl
'&l
'I.l'

e the character quote itself

invalid CHARACTER-constants:

vyt two data character set members

TAG! blanks are significant in character
constants

X no embedding character quotes

'y no terminating character quote.

object-reference-constant

There is only one object-reference-constant, namely
NONE

Any object reference variable may take the value NONE.

Secticn: 2.4.2

System/360 S l MU L A , : Page: 9
: Level: 0
Date: 5/4-1971

USERS GUIDE-
Originator: GB

TEXT-constants have the form

"{any sequence of members of the data charactef}"

set excluding a text quote (")

The length of a TEXT-constant is the number of members of the
data character set it contains. The length may be a whole
number in the range 0 through 215—20. Blanks are significant

in TEXT-constants.
Examples:

valid TEXT-constants:
"THISTEXTCONSTANTHASNOBLANKS"
"THISwWONEWHAS"

mn

invalid TEXT-constants: -
MONEW"uTOOWMANY" contains a text quote

"NEVERWENDING contains no terminating text
quote

Text quotes may be introduced into text objects by:
1) inputting a text value containing a text quote.
2) using the . procedure "putchar". The following code
inserts a text quote into the 1lith position of a

text object referenced by the TEXT variable T:

T.setpos(1lu4);
T.putchar('"');

