6 Debugging aids.

The following utility functions are available for program debugging at
compile~ or run-time?

- diaghostic messages from the compilers

- diagnostic messages at execution time,

- identifier cross~reference table from the compiler, see
ztztltiﬁ

- manipulation of the source listing by improving layout,
see Ze2elele

- program control and data flow tracing,

- symbolic dump of the environment at a run~time error,

- formatted storage dumps,

- assembly listing of the object code.

The two latter are normally only used in connection with system
maintenance, but users who connect to assembly procedures may think of
these functions as useful.

6.1 Diagnhostics.

Messages may be issued by all system components involved in the use of
SIMULA. These messages will appear on the printed output from the joby
or on the console listing. Each message is identified by a three-letter
prefix identifying the system component and a three-digit message
number within the component in the first six positions of the printed
line. An explanatory text will follow the message identification.

Messages are of three kinds:

i) Information messages - requiring no response from the
user .

iil Warning messages = should be considereds but no response
necessarye

iit) Error messages - requiring correction by user.

The most common messages are issued by the Job Scheduler (lEF),y the
SIMULA Compiler (SIM),s the Linkage Editor (IEW), the SIMULA object

program (ZYQ) and the Fortran diagnostic package (IHC, in external

Fortran procedures).

If @ program is aborted by the control program, a system completion
code and an optional abnormal termination dump will be printed.

Completion codes and messages issued by 1BM-supplied system components
are listed in (see (11}}.

Compiler and ob ject program messages are explained in Appendices B and
C.

bl TraCin§¢

6261

Program control flow tracing.

The program control flow tracing has been available in the IBM SIMULA
System from release 07.00, while the data flow has been available from
release 08.00.

General description

The system reports all events causing program control to
change its sequential flow; the control switching is indicated
in the form?

aaaa*bbbb?! mMes o

where saaa is the line number at which the sequential flow was
interrupteds bbbb is the line number at which control
continues and mme.em is the message giving the explanation.

There are altogether 22 different events that can be reported.
In order to distinguish tracing messages in the listing from
program coutput they are embedded in dots.

Either implicit or explicit tracing can be required (or both).
The implicit tracing will cause the specified number of
tracing messages to be output in case of a program error
describing the coerresponding number of events occurring before
the error coccurred. The explicit tracing can be achieved
during program execution via utility procedures TRACE, TRACEON
etcCe

Commencing with release 08.00 of the IBM SIMULA there exists a
possibility for tracing the flow of data during the program executione.
It is the tracing of events affecting the contents of the user defined
data structures that is covered by this facility (i.e. alterations of
data structures predefined in the system are not traced).

A1l kinds of data transmissions are monitored whether they are
expressed in the program explicitly as assignment statements or not
(eege parameter transmissions, text attributes for editing of numerals

etCele

Means of control

The control of tracing resides mostly with the RTS. The
following are the only traces whose presence is dependent on
compiler cooperation (SYMBOUMP must be greater than zero):

« Jjump from one prefix level to another.
« jump to first statement within a block.
« jump to a local label.

The number of tracing messages required in case of error is to
be specified using TRACE option of the runtime system. (See
2¢2+3414) This activates the tracing facility which then
remains in action behind the scene during the whole program
execution. Be aware of the fact that this degrades program
efficiency« For production programs the normal efficiency is
regained simply by specifying TRACE=0 as the RT option which
is normally a default anyway (check your installation).

A positive value ny if specifieds has as a consequence the
allocation of a buffer with n entries i.e. up to n tracing
messages will be output describing events immediately
preceding a RT~error. The disadvantage of this mechanism is
that maintenance of the buffer alone (i.e. disregarding
overhead due to its final interpretation) deteriorates program
execution considerably (30% - 50% cpu-time can be used for
this activityl.

Therefore it is much more economical to initiate the tracing
activity dynamically at a suitable instant prior to the
RT-errore. To this end one can specify a negative integer as a
TRACE parameter value« If value -n is specified the tracing
activity is started first after n assighments were carried cut
in the course of the program executione Consequently one must
know how many assignments were executed at the instant when
RT-error occurrede« This information is given from now on at
the RTS trailing line. Ubviously, using this method program
must be rerurn in case of & RT=error.

Finally, one can also use the TRACE option to specify a fill
character which will be used for embedding the tracing message
to distinguish them from normal program output. (The default
value is a dot character). This is convenient in case that
e.ge a default character is not sufficiently represented on
the pointer chains or to improve the outlook of tracing

- messages (underscore may be quite handy) or simply to shorten

the messages to fit on one line on a screen (use blank as the
fill character). All that is required for changing the default
fill character is to indicate the suitable character right
behind the TRACE parameter numeric value or next to the equal
sign if no numeric value is specified, e.g.

TRACE=100_ or TRACE=!
It is recommended that only selected events are traced (e.g.

simulation events etc.}; for this as well as the total list of
traced events see documentation of the tracing utilities.

The necessary conditions for obtaining data flow tracing message aret

- compilation of the program (module) with the option
SYMBOUMP=4,

- activating the tracer at execution either through specifying a
non-zero value for the RTS TRACE option (see Updates for
tracing control in release 08.00) or explicitly using the
tracing utility TRACE.

Since assignments are often the most frequently executed statements in
a program it is arranged so that a particular assighment is traced only
limited number of times (5 times in default) and further monitoring is
suppressed automatically. It is possible however to obtain further
traces by lifting this limit through use of the tracing utility
TRACECNT.

Finally note that the data flow tracing can be switched on and off
using the tracing utilities TRACEON and TRACEUFF through the message
number U used as the parameter value (it is on in default when tracing
commences unless explicitly suppressed).

Format of messages

All data transactions are illustrated in a form of a synthetized
assignment statement. The left hand side is a unique identification
(throughout the whole program) of the location being altered while the
right hand side is the actual value being assigned. The left hand side
usually takes the form of & (subscripted) variable, its declaration
block being identified at the right from the actual assignment image in
a separate column. Exception is & text value assignment where the left
hand side identifies the modified text object directly through its
counter. (Note that TEXT(1) stands for the standard SYSOUT image and
TEXT(2) for the standard SYSIN image.)

Finally one should note that each message of course identifies the line
number in the source text where the monitored event is expressed and to
which of its successive executions the message is related (the very
first number on the line followed by a star).

Control procedures for the tracing facility.

The following utility procedures are available for control of the
tracing facility on the IBM 360/370 SIMULA. The routines have effect
both for the program control=-flow and data-flow tracing.

1) TRACE

Motivationt?

Descriptiont

2) NOTRACE

Motivationt

Description?

It should be possible to start ocutput of tracing
messages from any point in the program.

The procedure can optionaly have one parameter.
Depending on whether it is used or not and
whether it is positive or negative, we have the
following cases:!

~ Ho parameter:
Tracing is wanted from now on.

- Positive parameter?
Tracing is wanted from now ons but only given
the number of messages are wanted. If a
RT-parameter TRACE was specified,
accumulation of messages in the buffer
continues afterwards. Otherwise the effect is
that of NOTRACE after the specified number of
messages is cutput.

- Hegative parameter:
The corresponding number of tracing messages
present in the tracing buffer is wanted. This
possibility demands that the RT-parameter for
trace was specifieds The buffer is emptied
after dumping.

It should be possible to stop listing of tracing
messages at any point in the programe. The
execution of the following part of the program
should not be affected by the fact that we have
been tracing a previous part of the program.

The procedure takes no parameters. If the
RT-parameter for tracing was specified, the
accumulation of trace messages continues in the
buffer of course. Otherwise all links tc the
tracing routines are removed, and the program
efficiency will hereafter be as if the program
had not been traced at all.

3) TRACEOFF

Motivation: The number of different trace messages is
relatively highs. For a specific application it
might be desirable to use only some of the
messages. Therefore the messages can be turned
off individually.

Descriptiont The procedure can take up to 18 integer/short
integer parameters. These will refer to a
message number. The specified tracing message
will then nce longer be listeds nor collected in
the tracing buffer if the RT-parameter was set.
If the value 0 is used as parameters the
dataflow tracing will be suppressed. If the
procedure is called without any parameters, then
all tracing messages are suppressed.

4} TRACEON

Motivation: For a limited part of the program it might be
desirable to have a more complete trace of the
control flows without getting an endless tracing
lTistinge. Therefore it should be possible to turn
the messages on and off individually.

Descriptiont The parameters are specified in the same form as
under TRACECFF. If the value 0 is usedy the
dataflow tracing will be activated.

5) TRACETXT

Motivation: For some applications the tracing facility may
be more than a debugging tool. It is also a good
general guide to the description of control flow
in SIMULA programs. For educational purposes it
might be desired to alter the text in some of
the messages. Some may alsc wish to change the
text to get a better overview of the messages
from the tracing for their special problem.

Description: The procedure takes two parameters. The first
one is an integer or short integer referring to
& message number. The second one is a text,
specifying the contents of the new message. In
some of the messages there is incorporated
variable information gathered under the flow of
program execution. It should be specified where
in the new text this information should occurs
The three characters &, % and $ are used to
specify where ob ject 1, object 2 and time is to
be placedy respectively. If any of these are
missing in a message which needs specificatiocny
it is assumed that the information is not
required. However, once dropped this information
cannot be anymore obtained in laber tracing
messages.

A Tist of the default messages with placement of
object 1, object 2 and time is appended.

In any of the procedure is used in conflict with its specification, it
will have no effect.

TRACECKT
functiont

declaration:

parameters?

results

notes

TRACE facility control

external asssembly integer procedure
TRACECNT

two optional parameters which must be simple
var iables or literals of type (short) integer.

The first parameter (if present) specifies how
many times (from now on) any assignment
statement is to be traced (default=5). The
second parameter (if any) specifies at which
column of the tracing line the declaration
block/ current process is to be monitored
{default=100).

Note that the skipping of the first parameter
can be achieved by specifying a negative value
at its place, also that the permitted range of
the second parameter values is <0,109>, the
value zero disabling the output of the
declaration block/current process monitor
altogether.

the integer value yielding the number of the so
far recorded assignment statementse.

the returned value may be conveniently used for
initiating/terminating dynamically various
events e.g. debugging printouts. Note though
that the assignment counting is carried out only
if the program was compiled with SYMBDUMP>3.

Tracing messages:

Nret Textt

1 CALLING &

2 GENERATING &

3 EXIT FROM &

4 DETACHING &

5 RESUMING &

6 ATTACHING &

7 EXFLICIT GOTO STATEMENT

g NAME PARAMETER [OR SHITCH THUNK

9 THUNK EVALUATION COMPLETED

10 LEAVING PREFIX &

11 STARTING BLOCK PREFIX

12 JUMP TO FIRST STATEMENT

13 & TERMINATED, % BECOMES CURRENT
14 & PASSIVATED, % BECOMES CURRENT
15 & CARCELLED

16 & SUSPENDED DUE TO ACTIVATION OF
17 & SCHEDULED FOR TIME 3%, 2 CONTINUES
18 & SCHEDULED FOR TIME ¥4, ¢ CONTINUES
19 & SCHEDULED BEFORE %, 3 CONTINUES
20 SIMULATION CLOCK IS ADVANCED
21 & REMOVED FORM A& SET
22 & PUT AFTER %

%

%k For message nr. 18 and 19, three objects should be

specifieds Here the character $ is borrowed to

the third object.

OBS: Message no O (zero) is used for the data flow tracings.

indicate

643 The symbolic dump facility.

Commencing with release 06.00 the 360/370 SIMULA System has a provision
for taking symbolic dump of the program under execution either at
specified points or when an execution error occurse This facility is
provided in addition to the earlier formatted hexadecimal dumps.

6.3.1 Design principles.

Although the full implementation of this facility requires an extensive
cooperation of many compiler and RT modules, the bulk of the work is
done in the RT=-routine ZYQDEBUG. By this separation it was possible to
design the debugging system so that

- the incurred coverhead in the execution time is negligible
unless the dump is really produceds in which case the increase
in the execution time is reasonably proportional to the amount
of the dump.

- the extra core required by the debugging system is at all
times at user control and may be altogether eliminated for
production runs where this system is not used.

Thisy plus the amount of the dump received and its format is controlled
by SYMBDUMP options introduced both in the compiler and the runtime
system. (Similar control can be exercised through parameters to the
assembly procedure SYMBDUMP which can be used at will for program
debugging).

6.3.2 Dump formate.

As regards the format of the dump in general, the following remarks are
of relevance:?

- the detail of the information provided can be graded in
approximately similar levels as with the hexadecimal program
dumips although in this case all information is given in the
source language terms.

- as regards the line number identifications occurring in the
dump they apply to the main program listing unless followed by
IN <external module name>.,

6e3e2¢1

Blocks.

The currently existing block instance of the program under execution
are identified by

6e3e242

procedure/class identifiers and/or line number of their
beginning in the source programe. Prefixed blocks are displayed
with their prefix identifier.

current status of the block instance is always shown where
relevant (e.g. ‘detached's 'inspected's etc.)

ob ject instances are counted on generation, separately for
each class and the corresponding counts then identify the
respective objects throughout their life span (given in
parentheses following the class name).

addresses (in hexadecimal notation) identify only arrays and
text objects in principle. However in the case that no object
counters are provided, the system must resort to the use of
addresses - in addition they can be provided also on request.
Note though that due to garbage collecting the addresses may
vary from dump to dumps.

Local quantities.

The respective quantities declared/specified in a block instance occur
in the dump after the block heading in the order of their definition.
Note particularly that?

in case that its current value is identical to the initial
value the quantity does not appear at all.

an attempt is made to identify actual parameters to formal
parameters called by name. However, in case that this would
entail an evaluation of an expression only an indication of a
thunk presence is given.

matches are shown for virtual specifications.

in default one and only one quant is output on a line.
However, the dump can be compressed by putting as many quants
per line as possible when required (e.g. when SYSOUT is
connected to a display screen).

6e3.243

Arrays.

Arrays form a specific kind of RT data structure which is also
reflected in their dump?

6e3e2e4

arrays are always mentioned in the dump together with their
bounds. Howevers only non-default valued elements appear.

as many as possible arrey elements are output on a line.

respective array elements are identified by the true subscript
(in parenthesis) in case of one dimensional arrays or by
ordinal numbers (commencing with 1) enclosed in a single
appostrophe in case of multidimensional arrayse. The mapping
between the ordinal numbers and the full subscripts is
obtained by counting the array elements varying the first
subscript most frequentlys then the nexts etc.

Text objects.

Similarly text objects, mostly due toc their reference/ value
properties, require a special treatment:

603.‘3'

the reference part of text cobjects signifies whether the
object in question is a subtext, and in all cases the current
position indicator value and length are shown.

if the text value in its entirety can be placed on the current
line it appears within a pair of double quotes. Utherwise only
the stripped value is shown, possibly continued - rightly
aligned after its first character -~ on one or more lines in
which case the closing double quote appears only in case the
last non=blank character comes on the same line of dump as the
very last character of this text does.

System overhead.

The execution time overhead caused by this facility is hardly of
relevances however one should realise that the following overheads are
inflicted in space requirements:

the prototype section of the compiled program is expanded when
dump of individual quants is required.

all objects are expanded by a minimum of one fullword when
ob ject counts are required.

the size of the loaded program is increased by ZYQDEBUG length
when its services are potentially required.

6+3e4.

System control.

In the sequel there is a detailed description of the compiler and RT
option SYMBODUMP. Hote that unless locally changed at system
installation (using SIMCDF and SIMRDF macros)s their default values are
0 (=NONSYMBDUMP) in case of compiler and 1 in case of RTS. Alsc note
that the following overrides take place automaticallyt

6¢3:6e1

compi ler SYMBOUMP is forced te 3 for separate compilation of
classes and procedures.

RTS SUMBDUMP is forced to 1 in case of an error or time timit
overflow in garbage collection.

RTS SYMBDUMP is suitably reduced when the program was compiled
with SYMBDUMPC3 and dump of local block quantities is required
through the initial RTS SYMBDUMP setting.

Compiler.

SYMBDUMP=3 causes extension of compiler generated
prototypes by local quantity lists in addition
to all below.

SYMBDUMP=2 causes extension of object lengths to encompass
ob ject counts which identify individual
instances In the dump (hexadecimal addresses
used otherwisel.

SYMBDUMP=1 (equivalent to SYMBDUMP) causes the RTS ZYQDEBUG
routine, producing the dump to be automatically
linked in.

SYMBDUMP=0Q (equivalent to NUSYMBDUMP) has the effect of
avoiding the linkage of the above routine to the
program,s thus limiting the dump possibilities to
the formatted hexadecimal dump (convenient for
production runs).

6¢3e442 RTS
SYMBODUMPC=1 no dump produced in case of error.
SYMBDUMP=2 headings of blocks on the operation chain appear.

SYMBDUMP=3 above plus the symbolic dump of the local
quantities of the involved blocks.

- SYMBDUMP=4 above plus SGS contents (an implicit garbage
collection is forced).

SYMBDUMP=5 above plus headings of all referencable blocks.

SYMEDUMP =6 above plus full dump of all referencable blocks.

6e3¢4e3

Ge3:5.

Additicnhal control remarkse.

Hexadecimal addresses of block instanced will appear, in
additional to eventual counterss with SYMBDUMP=7.

Any of the above SYMBDUMP values may be multiplied by 16 to
affect compression of quant dump.

the values recommended for program testing are?
compiler: SYMBODUMP=3
RTS: SYMBDUMP=3 and DUMP=1 (default).

.

the effective Tength of the lines produced by ZYQDEBUG is
directly controlled by LRECL subparameter of SYSOUT DCB
(maximumle The default value is customarily 132.

Example

The following example was solely desighed to illustrate the symbolic
dump facility at worke. In order to cut its length short, the system
output concerned with the snapshot of the compilation and the run time
system options in use was omitted. Alsoc omitted is the (useless) output

made on

the inspected printfile SIMPRINT, but on the other hand the

SYSOUT output shown here is complete. Note that the SYMBODUMP settings
were identical to those recommended in 4.32

17 MAR 1978 17:55:45,.18

SIMULA 67 (VERS 86.88) Ak SYMBDUMP DEMONSTRATION ook

01 Simulation begin real X; integer U, COUNT; B1
02 ref(Head) WAITQUEUE, COUTQUEUE;

03

04 Process class ENTITY; virtual: procedure SNAPSHOT;

05 begin real TIMEUSED; ' B2
06 procedure SNAPSHOT(TITLE) name TITLE; text TITLE;

07 begin external assembly procedure SYMBDUMP;

08 TITLE:=YDEBUGGIKG VERSIONY;

09 SYMEDUMP (4, STITUATION BEFORE STARTY);

10 end OF SKAPSHOT;

i1

12 TIMEUSED '=Time}

13 into(WAITQUEUE) ;

14 reactivate this ENTITY delay Normal(38,3,U);

15 TIMEUSED:=Time-TIMEUSED;

16 COUNT t=COUNT=1; CHARS(COUNT) t=tiet;

17 Hait (OUTQUEUE)

18 end UOF ENTITY; g2
19

20 boolean STARTED:

21 character array CHARS(8:127);

22

23

24

25 Ut=Inint;

26 WAITQUEUE t~new Head; OUTQUEUE:=-new Head:

27 for COUNT:=1 step 1 until 5 do activate new ENTITY;

28

29 Inspect new Printfile(lntext(8)) do

30 begin text SUBTITLE; B4
31

32 Open{Blanks(80)1});

33 Outtext (YSIMULATION PROTOCOL %}

34 SUBTITLE!~Image.Sub{Pos+l,iength-Pos);

35 HAITQUEUE.Last qua ENTITY.SNAPSHOT(SUBTITLE);

36 Close;

37 end OF INSPECTION; E4
38 :

39 STARTED:!=true; Passivate; comment WILL GIVE A RT-ERROR:

40

41 end OF PROGRAM El

NO DIAGNOSTICS FOR THIS COMPILATION.

Note that RESHD=3 was used in order to get the kew-words and standard
indentifiers in lower case, also the indentation was taken care of by
the compiler alone).

The first part of the SYSOUT output is produced by the systems utility
SYMEDUMP @

=== SYMBDUMP CALLED AT LINE @299 (SITUATION BEFORE START) ======--cew-
OPERATING CHAIN
SYSOUT INSPECTED AT SYSTEM LEVEL: IMAGE==$#299358/P0S=1 OF 132/=v
SYSIN INSPECTED AT SYSTEM LEVEL: IMAGE==#2993E8/P0S=1a OF
8a/=Y"3SIMPRINT

PROCEDURE SNAPSHOT ON LINE @@e6 (LOCAL TO ENTITY(5) ON LINE 2994),
CALLED FROM LINE 29353

TITLE IS SUBTITLE OF BLOCK ON LINE wa3a

BLOCK ON LINE a33a:
SUBTITLE ==$399398.35UB(22,59)/P0S=1/="DEBUGGING VERSICN

PRINTFILE(Z) ON LINE @aa@ IN *PREDEFINEDY, TERMINATED,
VISIBLE THROUGH IWSPECTION:

IMAGE ==4999398/P0S=21 OF 8a/=YSIMULATION PROTOCOL:
DEBUGGING VERSIUON
DONAME $SIMPRINT
LINE =1
LINESPERPAGE =46
SPACING =]
SIMULATION BLOCK ON LINE a22@l:
MAIN ==MAINPRUOGRAM(1)
CURRENT ==MAINPROGRAM(1}
U ==1317961513
COUNT =6
WAITQUEUE ==HEAD (1)
OUTQUEUE ==HEAD(2)
#299188 ARRAY CHARS(a@t127):
SQS ¢ SCHEDULING TIMES PROCESSES (SIMULATION BLOCK AT LEVEL 1,
ded MAINPROGRAM(1) ON LINE @222 IN
*PREDEF INE D,

DETACHED AT LINE 2392
2.T767572517395Q2E+a1 ENTITY(5) ON LINE 2294,
OETACHED AT LINE 3J3l4
3e06943817138672E+21 ERTITY(Z) ON LINE 3024,
DETACHED AT LINE 2al4
3.1606803894a430E+a1 ENTITY(4) ON LINE 2924,
CETACHED AT LINE @214
3.29338769912720E+a1 ENTITY(1) ON LINE 2324,
DETACHED AT LINE 23l4
3.71304626464844E+a1 ENTITY(3) ON LINE 2324,
DETACHED AT LINE 3314

-== END OF SYMBDUMP CALL AT LINE 9@@9 =======-==ccc=ccccoan ——————————

This was the cutput produced before the execution error predicted on
line 0039 disabled a normal program completion. The appropriate
diagnostics accompanied by the operating chain dump follows on the next
page .

ZYLBETRokPASSIV SQS.LAST AT LINE @al7 ollokollodoolsiodosfiosioioloioksfoklololoroilok
OPERATING CHAIN @
SYSOUT INSPECTED AT SYSTEM LEVEL: IMAGE==#099a58/P0S=1 OF 132/=v

SYSIN INSPECTED AT SYSTEM LEVEL: IMAGE==#2993E8/P0S=1a OF
8a/=Y"35IMPRINT

i

ENTITY(3) ON LINE 23234, DETACHED AT LINE @@17:

suc ==HEAD (2)

PRED ==ENTITY(1}

SNAPSHOT HAS MATCH AT LINE Qa6

TIMEUSED =3.713a4626464844E+a1
SIMULATION BLOCK ON LINE @aal:

MAIN ==MA INPROGRAM(1)

CURRENT ==ENTITY(3])

u ==1317d61513

COUNT =1

WAITQUEUE ==HEAD(1)}

OUTQUEUE ==HEAD(2)

STARTED =TRUE

#299188 ARRAY CHARS(@:127): (1)=&t (Z2)=tk' (3)=t%t (4)=t"?

EALL

6e3.6.

External utilities related to the SYMBODUMP facilitye.

SYMBOUMP

function:t

prints a symbolic snapshot of the program under
execution. The cutput format is basically the
same as that used in case of & run-time error
detection with RT option SYMBDUMP > 1.

declarationt external assembly procedure SYMBDUMP

patrameters:

result:

= (short) integer which determines the extent of

the snapshot as follows:

value displayed

<=1 nothing

2 headings of blocks on the coperating
chain

3 above plus the symbolic dump of the
involved blocks

4 above plus SQS contents

5 above plus headings of all
referencable blocks

6 above plus full dump of all

referencable blocks

- a single reference variable (of arbitrary

qualification) causing the snapshot to be
limited to the object referenced.

a single text variable or a text constant
(string) whose value Is used as the shapshot
he&ding.

(short) integer from within one of the
followinyg intervals:?

<1 ¢ current block level> or
<1 - current block level ¢ 0>

which will cause the snapshot taken to be
limited to a single block instance on the
static chain counted upwards from the outermost
block in case of positive value of backwards
from the current block if negative.

no value returned.

notes:

the order of the parameters is irrelevant with
the exception of the (short) integer parameter
ambiguity implied above.

in case that a specific block dump is reguested
either by a reference parameter specification
or by a display indication, the ordinary dump
(of the operating chain, SQS and pool 1) is
suppressed.

if the total volume of the dump produced is at
premium rather than its structure (e.g. when
SYSOUT is connected to a display screenl)s the
system may be instructed to output as many
quants on a line as possible by using as the
first parameter a value which is a 16-multiple
of any of the values shown above.

the length of the lines output SYMBDUMP is
directly controlled by the SYSOUT setting of
LRECL.

1D

functiont

declaration:

parameters:

results:

notes

ob ject identification through its class
membership.

external assembly text procedures ID

one and only parameter which must be a simple
reference to an object of arbitrary
qualification.

reference to a text ob ject the value of which is
the identifier of a class which the ob ject passed
as a parameter belongs.

- the class identifier returned is truncated to
the first 12 characters if necessary.

- in case that the reference passed as the actual
parameter does not currently refer to any
ob jecty the value returned is notexte.

NO

functions

declarationt

parameter:

result?

note:

ob ject identification via internal count value or
adress.

external assembly integer procedure NO

one and only one parameter which must be a simple
reference to an object of arbitrary
qualtification.

integer value which is a numeric identification
of the cbject referenced by the actual parameter.
The following possibilities may occur:d

sign(NO)>0 the value returned is the ordinal
number of this particular ob ject
within the given class.

sign(NO)=0 which identifies a case when the
reference value of the actual
parameter is none.

signh(NO) <O (occurs in case that the program
was compilted with SYMBOUMPCZ and
thus no internal object counters
were provided). The value returned
is the =-1* <address of the object>.

when & program re-execution is affected without
reloading {e.g+«) using the SIMCNT monitor), the
ob ject counters remain at the values reached in
the previous execution i.ee« no resetting to zero
CCCUrSe

&b Qump.
A formatted core is optionally printed when an object program is
terminated because of & run-time error. The DUMP parameter of the
ob ject program (2.2.2.1) determines the dump level.

DUMP= meaning

4 No debugging information is provided. The job step
is aborted if a run—-time error occurs.

1 A diagnostic message and a register dump is printed
if a run~time error occurs.

In addition to the information of level 1 the
operation chain is printed.

[p%

3 Prints the information of 2, the sequencing sets of
all SIMULATION blocks and the local sequence
controls of all scheduled processes.

4 Prints the information of 3 and all local sequence
controls of non-terminated objects.

[k

Prints the information of 4 and all referable data
structures in hexadecimal format.

