4 Implementation defined parts of the SIMULA language.

The references in each sections refer to (12).

4.1 Use of system prefixes.
Refer section 2.2.1.

The system prefixes SIMSET and SIMULATION must not be used at more than
ohe block level at a time in & program (including external procedures
and classes). When a SIMSET or SIMULATION block is left through the
final ends another one can be declared at any block level. Several
incarnations of a SIMSET or SIMULATION block can exist at the same
time, as long as they have the same block level.

SIMSET and SIMULATION can be used for block or class prefixing.
LINKs HEAD and PROCESS can be used for class prefixing only.

FILE subclasses must not be used as prefixes.

4.2 Accepted virtual specifiers and rules for virtual matches.
Refer section 2.2.3.

The accepted virtual specifiers are the same as the legal procedure
parameter specifiers. For all virtual quantities any match must have
the same type as the specification, except for the case of a virtual
REF procedure, where a subordinate type is accepted (cfe (12)y 3.2.5),
and a <{notype> procedure, which can be matched by a <{type> procedure.
In the latter case the type is accessible only at access levels deeper
than or equal to that of the match, and any match in a subclass must
“have the same type, or a type subordinate to that of the latest match.

4,3 Collating sequence.

Refer section 3.2.2.1.

The collating sequence is defined by the 8-bit internal EBCDIC
character representations which alsc defines the integer-character
correspondence established by the standard procedures RANK and CHAR
(4).

44 Initialisation of character variables.

Refer section 3:2:%.

Character variables are initialised to internal zerc bytes. These have
no printable equivalents but usually show up as blanks.




4.5 Evaluation of Boolean expressions.
Refer to section G.¢2.2.1

In SIMULA for 360/3270 a1l function designators occurring in a Boolean
expression will be evaluated from left to right. Some other systems,
however, do not follow this rule. They operate such that evaluation
proceeds from left to right only until the resulting value of the
Boolean expression can be calculated. For this reason you are advised
not to use side-effects of function designators occurring in Boolean
expressionss unless you have checked that execution is independent of
the evaluation method. Utherwise this would destroy the portability of
the programe.

4.6 For statements.

Refer section 6.2

The controlled variable of a for statement must not be a remote or
subscripted variable, a formal parameter called by namey or a procedure

identifier. Note that the value of a controlled variable is welldefined
when the for statement is left.




4.7 Parameter type correspondence.
Refer to section 8.2«

The type correspondence rules for parameters are given in the table
Gele

. - - — i ————— = 4ot . o ot . T T S S o i i — s

L mode ! ! L4 4
! e ! ! ! !
! formal o ! name ! reference ! value !
! parameter %ol ! ! t
! ! t ! f
! <value type> !t C ! - LA !
' - —t ! ! _ !
! {reference ! t ! !
! type> r C ! C t C f
1_ - —_— ! t | S
! <value type> ! ! ! !
! ARRAY L ! 1 LI § !
| S ' ! ———— ! _ !
! <ref type> ! ! ! £
! ARRAY tC ! I r - f
| - ! | S 1 - ¥
! {type> ! ! ! !
! PROCEDURE t s ! S Po- !
! ! ! ! !

o s - — . o e

Table 4.1t Actual/formal type correspondence
c: types must be compatible.
I types must coincide.

St actual type must be subordinate to formal type.

4.8 Separator

Refer to section 10.8.2.

On output (PUTFRAC; DOUTFRAC) & <separator> is a blank character.
On input (GETFRAC, INFRAC) a blank or a comma is accepted.

A separator is a character separating the digit groups in a <{GROUP>.

4.9 Power-of-ten symbol.

The basic symbol is used by the standard procedures PUTREAL,
OUTREAL s GETREAL and INREAL. Initially is represented by E (as in
Fortran)s but it can be altered dynamically by means of the standard
procedure LOWTEN, which has one character parameter. After a call on
LOWTEN, the character passed as parameter will act as the power-of-ten
symbol in place of E. This character should not be a digitsy a signy a
blank or a period.




4,10 Edit cverflows
Refer section 10.10

If an edit overflow occurss the text intc which the number could not be
edited is filled with asterisks.

In addition a warning message is printed at the end of program
execution and 4 is added to the return code.

4,11 Formats of editing procedures.
Refer section 10.10.

PUTINT: The number is edited with initial zero
suppresion. If it is negativey a minus sign
is edited immediately before the first
significant digite. Zero is edited as the
single digit 0, right adjusted in the text.

PUTFRAC: The number is edited in three-digit groupss
~ starting cutwards from the decimal pointe. If
the number is zeros the digits after the
decimal point are zero. For a negative
number, a minus sign is edited immediately
before the decimal point or the first
significant digit, whichever is first.

No more than 12 digits may appear after the
decimal point.

PUTREAL?® The number is edited according to the
picture?

sde.dddEzdd or skEzdd

where s is blank or -
d is a digit
z is *+ or -

The number of digits after the decimal point
depends on the precision requested.

Zero is edited as a single 0, right ad justed
in the text.




4.12 HMathematical subroutines.

The following elementary functions are available as standard functions:

hame

ARCCGS
ARCSIN
ARCTAN
cas
COSH
EXP

LN

SIN
SINH
SQRT
TAN
TANH

function

(cos X)¥dk=1

(sin X)dork=1

(tan X)oc=1

cos X

coshyp X (1/2(e¥xx + e¥¥(-x)))
el X

In X

sin X

sinhyp X (1/2(efkx = e¥k(=-x1})}
SQRT(X)

tan X

tanhyp X ((ed¥%x = edk(=x))/(edix + e¥*(=x})}]

The approximaticn methods used to compute these standard functions are

described in (see (14)}).

The function value is computed in double precision if the argument is

of type LONG REAL.

The algol-defined functions ABS, ENTIER and SIGN are alsoc available.

4,13 Array subscript checking.

The subscripts of an array are not checked individually, but a check is
made to see that the address of & subscripted variable lies within the

array.




4.14 External procedures.

Any REF type parameter of an external procedure must be qualified by a
subclass of FILE.

An external <type> procedure may have sny type except REF.

The name of an external procedure may not start with the prefix ZYQ,
and seven characters are significant.

When a program includes a declaration of an external procedure, an
entry in the external symbol dictionary is generated (ESD). Khen the
procedure is used in the programsy this ESD entry will be used as the
basis for the information passed on to the loader. If the procedure is
not referenced, the information will not be passed to the loaders i.«e.
only those procedures that are actually used will be included by the
loader .

A user can indicate that an assembly procedure does not require the
standard interface in order to work correctly. In such case the routine
is linked in directly which resuylts in an increased efficiency., In
particular note that:!

- One must use the word FAST after external e.g.
external fast long real procedure cputime;

- Such procedure cannot have parameters (so far) but, if the
procedure name happens to be CODE (Cf. External Procedure
Library, NCC Publication S56) then the compiler will plant
its literal parameters as in-line code and no call will be
generated at all.

- A given procedure can only be linked in one way in a
programse




4,15 External classes.

Any REF type parameter of an external class must be qualified by a
subclass of FILE or by the external class itself.

The name of an external class may not start with the prefix ZYG¢, and
seven characters are significante.

To compile @ class separatelys use the procedure SIMC as follows:

Notes?

External

//XEC EXEC SIMC,PARM=FEXTERN=C?
//SYSPUNCH DD BSN=library=-name (Mname) ,DISP=0LD,DCB=BUFNO=1
//SYSIN Do %
<class source code>
/%

ae The class code submitted on SYSIN must start with the word
class or a prefix identifier or an external class
declaration, ie.ee¢ it must not start with begin.

be If BISP=0LD is coded on the SYSPUNCH statement and there
was already a member called Mname in the library,s it will
be overridden by the currently compiled class. DISP=NEHK
disables the overriding.

c. Mname may conveniently be identical to the class identifier
but this is not a rulesu

class usage in the main program can be achieved by use of

procedure SIMCLG:

MNote?

Example!

//USEC EXEC SIMCLG

//75YSLIB DD DSN=library-name ,DISP=5HR

SYSIN oo S
{SIMULA program (or class to be separately compiled)
which contains the external class declaration>

/%

ae External class declaration has one of the following forms:

external class classname;
external class classname=Mname;

This is placed among the declarationss and the line itself
must not contain anything else.

The second alternative is used in case that classhame is
different from HMname.

The following is an example showing how to use an external class
MYSIMSET as & program prefix:

//USEC1 EXEC SIMCLG

//SYSL1IB DD DSN=library-name ,DISP=SHR

//SYSIN DD %

external class MYSIMSET;

MYSIMSET begin
{program declaraticns and statements>
end of programs;

/%




4.16 Assembly and Fortran procedures.

Any parameter to an EXTERNAL ASSEMBLY PROCEDURE must be a declared
variabley a parameter called by value, a declared arrays an array
parameter not called by name or a label local to the block of the call.
An EXTERNAL <type> ASSEMBLY PRUCEDURE may have any type.

The same rules apply to an EXTERNAL FORTRAN PROCEDURE and an EXTERNAL
{type> FUORTRAN PRUOCEDURE, but types REF, TEXT, LABEL and formal arrays
are not permitted.




4,17 Random drawing procedures.

The procedures for probability distributions use Lehmers multiplicative
congruence method for random number generation:

Uli) lambda’U({i=1} {(mod P)

H

X{i)y = U(iy)/P
with
P = 2%%32 = 4294957296
lambda = 8%k13 = 1220703125

Each X(i) is computed with 24 bits significance. Since the U(i) are
represented with 32 value bits and no sign bits the antithetic drawirngs
are obtained by reversing the sign of the initial value.

Since it may be important to know the algorithms used for obtaining the
various distributionss a formal definition is given in SIMULA. The
utility procedures XI(U) and UI(U) return X(i) and U(i), respectively,
and they also replace U(i=1) in U by Uli}e. The checks for parameter
validity are not shown,s but if the algorithmic description implies a
reference to & non-existent array elements then this will be detected.

BOOLEAN PROCEDURE DRAM(A,U); NAME U3 REAL A3
INTEGER U3}
DRAK = (XI(UJ<A})}

INTEGER PROCEDURE RANDINT(A;B,U)}; NAME U;
REAL A, Bj INTEGER Uj;

RANDINT = (UI(U)//72%(B=A+1)//2%%31+A}

COMMENT THE PRECEDING EXPRESSION CANNOT BE EVALUATED
IN SIMULA FOR 360 (FIXED OVERFLOW);

REAL PROCEDURE UNIFORM(A, By U); NAME U
REAL A, B; INTEGER Uj

UNIFORM = XI(U)YX*(B-A)+A;

REAL PROCEDURE NEGEXP(A,U); NAME U;
REAL A} INTEGER Uj
NEGEXP := ~LN(XI(U))/A;

INTEGER PROCEDURE POISSON(A,U); NAME Uj

REAL A INTEGER Uj

BEGIN INTEGER T; REAL R, R1;
R1 = EXP(-A}} R = 13}

L R ¢= R¥XI(U); IF R>=R1 THEN
BEGIN T = T+15 GOTO L END§
POISSON = T3

END POISSON;




REAL PROCEDURE ERLANG(A, B, U); NAME U;
REAL A, Bj INTEGER Uj;
BEGIN REAL AB, P;
AB = A%B; P = 1;
FOR B := B-1 WHILE B>=0 DO
P = P*XI(U);
P i= LN(P);
IF B <>0 THEN
P t= P=BALN(XI(U));
ERLANG *= =-P/AB
END  ERLANG;

COMMENT LSB AND USB BELOW ARE NOT USER-ACCESSIBLE;
INTEGER PROCEDURE LSB(A)}; ARRAY Aj
COMMENT RETURNS LOWER SUBSCRIPT BOUND
FOR A ONE-DIM ARRAYS +ee

INTEGER PRUOCEDURE USB(A); ARRAY A;
COMMENT RETURNS UPPER BOUND; oo

INTEGER PRUOCEDURE DISCRETE(A, U); NAME Uj

ARRAY A5 INTEGER U;

BEGIN INTEGER I, Ji REAL X;
X ¢= XI(U); I = LSB(A); J t= USB(A)-I;
FOR J = J//2 HHILE J <30 0O
IF A(I+J)<=X THEN I = I+J;
FOR I &= I+1 WHILE I<= USB(A) DO
IF ACI)>X THEN GOTO L3

L: DISCRETE = I;

END DISCRETE;

REAL PROCEDURE LINEAR(A, Bs U); NAME U;
ARRAY A, B; INTEGER Uj
BEGIN INTEGER I, Jj REAL X3i
X &= XI(U); I = LSB(A); Ji= USB(A)-1;
FOR J = J//2 WHILE J <30 DO
IF A(I+J)<= X THEN I = I+J;
FOR I &= I+1 WHILE A(I)<=X DO

LINEAR = B(I-1)+(X-A(I-1))%(B(1)=-B(I-1)}
/(ACL)-A(I-1))

END OF LINEAR;

INTEGER PROCEDURE HISTD(A,U); NAME U ARRAY Aj
INTEGER U;
BEGIN REAL S INTEGER Tj
FOR T ¢= LSB(A) STEP 1 UNTIL USB(A) DO
S = SH+A(T)
S t= SHXI(UIL T = LSB(A);
Ls S t= 5-A(T): IF 55=0 THEN
BEGIN T = T+1; GOTO L END;
HISTD = T3
END OF HISTO;




REAL PROCEDURE HNORMAL(A,B,U}; NAME U
REAL A,B; INTEGER Uj;
BEGIN REAL XL +Si
Al: X = 2AaXI(U)~1;
S t= XI(U)wok2+X%xX;
IF S>1 THEN GOTC A1
L s= SQRT(-2%LN{X1(U})}/S);
NORMAL = Xi|%B+4s
END RORMAL;

4,18 Attribute protection.

The definition of attribute protection is not fully implemented.
Programs containing hidden and protection specifications will be
checked syntactically, but the specifications will be treated as
comments.

A warning is given indicationg the lack of semantical implementation
the feature. ‘




