3 Hardware and implementation defined restrictions and capacity
limitations.

3.1 Permitted ranges of arithmetic quantities, precision of real
number arithmetice.

The ranges of arithmetic quantities are listed in table 3.1.

-— — e - ——

!
!

1

é quantity ; max imum ; minimum %

% INTEGER % 2%31 - 1 —"'§~:§§§§I__§

g SHORT INTEGER _-é 2¥15 = 1 B "é ~2%%15 g
§-°"§EKC' %) é— ((1-16)%%=6)%16%463 -_é 16**:E§-§
E—GE6§5_§EAL %) §°—f€1-1575*-14)*16**63’-§ 1&**-65‘%
Table 3.1¢ Ranges of arithmetic quantities.

%) The range of the magnitudes of normalized numbers are

given. A true zero is also representable, and the range
of the magnitudes of negative numbers is the same as
for positive numbers.

Integer arithmetic is performed exactly.

REAL quantities have a precision of 6 hexadecimal digits (around 7
decimal digits), LONG REAL quantities have 14 hexadecimals (around 16
decimal digits). There may be an additional loss of precision due to
the rules for truncation of floating point operation results (see (4)).
3.2 Maximum sizes of block instances, arrays and texts.

The maximum size of a block instance is 4096 bytes. The size of a block
instance depends on its parameters and declared quantities and can be

computed using the information in 3.4.

There is no maximum size of an array, but if the last subscript is
ignored, the array must not have more than 2%%15 - 1 elements.

A text must not have length greater than 2%%15 - 20.

3.3 Program capacity limitations.
Besides the capacity limitations given in the table below there are

restrictions on the complexity of an expressions for which no
comprehensive estimate can be given. See also 3.2

]

- -

Item Ymax valueg
1 f
Block level 1) ! 15 !
¥ 1
Prefix level of class or prefixed block 2) 62

Number of parameters to a procedure or a class
(including parameters of prefixes)

Number of garameters to Fortran or assembly procedure.

- el B bwm AR Bag SR
[y
(g8] P
Famt goam AwE Ao s - -

——— ——— o et e i s . s e

For statement nesting level ! 255 !
|4 f
Designational expressions in switch declaration ! 127 '
! !
Number of virtuals specified in class t f
(including prefixes) ! 255 !
t t
Number of subscripts of array 4 127 !
! t
Identifiers declared in one list ! 127 !
1]
Number of differently spelled identifiers, ! !
compiled in minimum core area ! 1000 !
t 1)
Number of differently spelled identifiers, ! !
independent of core area 3) 3072 !
t 1]
Redeclaration level capacity 4) 14 30 !
f |1
Number of fixups Dep. on
t

v
St

'part.size

—§umber Gf_;xternal references ¢)

Bl AT A AE SUE R ER B R S S RD B SR Gm AR SR BB B GME R Samt Rl PO AWE Sl Gww BWR Pl Gl CWB R Rwm R Soamt Som

G-
S e A e g

200

e e et et & s sty e i . s ot

[y
o4

The block level for a program point is the number of
begin-end pairs that enclose ity excluding those of compound
statements, but including connection blocks.

2) A class with no prefix has prefix level zeros and a class with
prefix has prefix level one higher than its prefix.

3} This is normally 1500 user identifiers as default. In order to
obtain the maximums the compiler CSECT DEFAULT must be modified
and the compiler regenerated to increase tha table size.

4) Block level plus the number of enclosing compound statements
that have local labels and are also controlled statements or
connection blockse.

5) The number of fixups generated by program constructions aret

vt ot et e . s —— -— . e st i i o it i . S s g .

! f !
! Item ! Fixups !
¥ e t - !
! Class declarations prefixed block ! 4 !
]] 1]
! Other block t 3 t
! — ' 4
! then t 1 !
o _t _— !
! else t 1 !
t ! 4
! label ! i !
r__ _ ¥
! inspect ! 3 !
| S - I DR
! when 4 1 1!
v ——— I f
! for statement 4 2 !
L S e Y !
' switch ' 1 !
! ! !

i
i
|
|

3.4 Object program storage requirementse.
The SIMULA object program needs storage of three categoriest

i) Storage for compiled code (load module).
ii) SIMULA working storage.
iit) System working storage.
The amount needed for i) is fixed during program execution and can be
determined from the linkage-editor listing when the object program is
created.

The amount of system working storage needed can be determined from (2).

The amount of SIMULA working storage needed is the sum of the storage
needed for all referable block incarnations in the programs and a
general overhead of 368 bytes (which includes the images of sysin and
sYsout) «

Except for space for declared variables a block takes:

24 bytes if it is not terminated, or if it is an object of a
class with lecal class attributes

24 bytes if it is a scheduled process

24 bytes if it is a procedure made visible through connection
or remote referencing.

The block instance itself has an overhead of 8 bytes and the storage
needed for parameters and declared quantities can be determined from
table 3.2, which gives the number of bytes and the alignment factor for
any quantity. Quantities are allocated in the order in which they are
declareds then 4 bytes are added for each nesting level of for
statements.

———— e e g e e — Bl h——

ok, mode ! declared or ! parm.by ! —parm. by !
! L ! by value ! reference ! name !
! . | S r_ N S !
! quant ko 1S LI ! s ' A 1T -
| S ! S S L ! | S SUN
! PROCEDURE 'o ' o ! 8 I 4 tr8 t 4
! LABEL 4SWITCH ! ! ! ! ! ! !
L . S L . LI ' L SR SRR
I REAL ' 4 t 4 ! - LI r 8 o4 !
'_ —— | S SO ! ! ! ' !
! LONG REAL '8 ! 8 ! - t - L
__ ! | S ! !_ | S SRR
! INTEGER L !4 ' - ! - ! 8 ! 4 1
Y | SN SN ! _ . .t
! SHORT r 2 v 2 LIRS f - PFs o4
! INTEGER ! ! ! ! ! ! !
LI '__ L N ! —
! BOCLEAN 'l 11 f - r - g r o4
! CHARACTER ! ! ' ! ! ! !
L S ! _! L | . | S SN
! REF ' 4 ! 4 ' 4 ! 4 v12 v 4 !
| S _ S SO S ' ! ' | SR |
!OTEXT 112 t 4 r12 ' 4 8 I 4
| ! | S ! | S, g !
! REF ARRAY ' 4 !4 1 4 ' 4 t 12 1 4 t
e ! L S | | . ! .t
! arrayts ' 4 L ' 4 ! 4 r 8 v 4
| SN SUNU | S ' ! L S |
Table 3.2 Space for quantis in block instance .

S ¢ size (bytes) for quantity.

A ¢ alignment of quantity.

For g <type> procedure block instances the result takes the space of a
declared quantity of the same type.

Arrays and text blocks are allocated cutside the block instance. An
array needs the space required for all its elements according to table
3.2y and an overhead of 28+2%n bytes, where n is the number of
subscripts of the array. A text block needs 12+n bytes, where n is the
length of the main text.

The sizes of block instances, arrays and texts are always rounded
upwards to a multiple of 8.

