2 System elements.
2.1 Job control language.

The environment of 360/370 SIMULA is the 360/370 Operatin System.
Actions to be performed under this system are specified by a job
control language (JCL), the statements of which are called job

control statements. The job control language is considered to be more
complicated and more difficult to use than other similar control
languagess but it is also very flexible and useful once it is mastered.

The general format of a JCL statement ist
//name operation operahnds

The two slashes are in columns 1 and 2 of a line and identify it as a
JCL statement.

name is an identifier of not more than 8
consecutive alphameric charactersy the first
of which is a letter. The nhame starts in
position 3.

operation is a word separated from the name and from
the operands by at least one blank. The
words considered here are JO0OB,s EXEC and DD,
identifying a job statement, an execute
statement and a data definition
statement, respectively.

operand is a list of operands separated by commas,

: with no intervening blanks. The operands are
either positional (the meaning of the
operand is determined by its relative
position in the list) or keyword (the
meaning is determined by a keyword followed
by an equal sign preceding the operand).

An cperand list can contain only positional
operands, only keyword operands, or both,
but all positional operands must precede all
keyword operands in the operand list.

The operand list can be continued on the
next line if it is interrupted after a
comma. The following line is then marked
with two slashes in position 1 and 24 and
the operand list is continued starting
anywhere between the 4th and 16th position.
No part of an operand list may extend past
position 71.

The use of each particular JCL statement is described in the succeeding
sections. For reasons of readability and simplicity several operands
are omitted and the rules are sometimes given in a stricter form than
is necessary when this does not decrease usability. The actual rules
are given in (6).

2elel JOb statement.

The largest unit of work recognized by the system is a jobs defined
by a job statement and the following JCL statements up to the next job
statement in the input stream.

The name field of the job statement is the job name, used to identify
the printed output from the job. The operands of & job statement supply
account inginformation and programmer name by positional operands.
Keyword operands can be used to specify whether the JCL statements of
the job will appear on the message listings and to specify a minimum
size of core in which the job can be run.

Example:t

//A JOB 0,SMITH,MSGLEVEL=1,REGION=90K

A is the job name
JCB identifies the this as a job statement
0 is the accouting information. In general you

must replace the 0 by your account number
and possibly some other information
depending on the installation.

SMITH is the programmer name. Special rules apply
if the name contains blanks or other
nonalphameric characters (see (6}}.

MSGLEVEL=1 requests the system to let the JCL
statements of the job appear on the message
lTisting. If omitted, no JCL statement will
appear.

REGION=90K is a request for a problem program partition
of not less than 90 K bytes. The parameter
is an unsigned integer followed by a K
indication multiplication by 1024.

In a system with LCS support (release 17 or
later) storage of both hierarchies can be
requested (see (6])).

2¢le2 Execute statement.

A job consist of one or more job steps. A job step is defined by an
execute statement and the data definition statements (DD-statements)
following it. The job steps of a job will be executed sequentially in
the order in which they appear within the job. The execute statement
defines a program which will operate on data defined by

Db-statements of the job stepe The name field of the EXEC statement is
the job step name. The operands of the execute statement define the
program to be executed and, optiocnallys a parameter string to the
program and a test for bypassing the step.

Examples

//51 EXEC PGM=progname,PARM="'parm string',COND=conditions

s1

PGM=progname

PARM='parm string!

COkD=conditions

This is the step name (name of the execute
statement)} of the job step to be executed.
This is used for referencing the step for
instance in JCL messages.

The PGM operand defines the program to be
executed. Progname os the name of a load
module (Z2.2.2). in the system link library,
the job library or the step library.

The system link library (SYSL.LINKLIB) is
always accessible. A job library can be
defined by a DD-statement with the ddname
JOBLIE, immediately following the job
statement. A step library is defined by a
DD-statement with the ddname STEPLIB, placed
among the DD-statements of the step.

A parameter in the form of a character
string is passed to the program by means of
the PARM operand. The interpretation of the
parameter string is dependent on the
program. The parameters allowed for the
SIMULA compiler and the SIMULA ob ject
program are discussed in sections 2.2.1 and
2e2¢3s respectively.

conditions is a condition or a list of
conditions separated by commas and enclosed
in parentheses. If any one of the conditions
is satisfied, the step will not be executed.
A condition has the form (unsigned integer,
relops stepname)

relop is any of EQy GEs GT, LEy LT or KNE,
meaning=s 2>=s 2>y <=y < Or
respectively.

stepname is the name of a preceding job
step in the job.

When & program terminatesnormally, & return
code is passed to the operating system. It
the stepname of the conditions is replaced
by the return code of that step you get an
arithmetic relation, and the condition is
satisfied if this relation is true. The
return codes passed by application programs
are discussed in subsections of 2.2.

A condition can also be any of the words
EVEN and ONLY.

EVEN is never satisfied, which implies that
the step will be executed even if an earlier
step terminated abnormally.

ONLY is satisfied only if no earlier step
has terminated abnormally.

1f neither EVEN or ONLY occurs among the
conditions, the job step will be bypassed if
an earlier job step terminated abnormally.

Special rules apply if EVEN of ONLY is mixed
with relational conditions (see (6)).

2¢le3 Data definition statement.

A data definition statement (DD-statement) defines either data on which
the program of a job step will operates or a program library from which
the program is to be loaded. The name field of the DD-statement is the
ddname, which connects the data to a logical file of the program. A
detailed description on the use of DD-statement is found in section 5.

2.1.4 Catalogued procedures.

In order to reduce the number of control statements for frequently used
job step combinations, the system provides a cataloguing facility for
JCL statements. A set of catalogued JCL statements, constituting one or
more job steps (procedure steps) is called a catalogued procedure. The
operands of the JCL statements can be modified when the procedure is
used by means of symboelic parameters. The operands that can be

changed in this way are defined when the procedure is catalogued.
Operands not given symbolic parameters can be overridden when the
procedure is used. The use of the catalogued procedures supplied as
part of the 360/370 SIMULA is described in section 2.%.

Invoking a catalogued procedure.

A catalogued procedure is invoked with an EXEC statement in which the
keyword PGM operand is replaced by a positional operand which is the
name of the procedure. The keyword operands of this statement are the
symbolic parameters of the procedure.

Modifying execute statements of a procedure.

Uperands of the execute statements of the procedure can be redefined in
the EXEC statement invoking the procedure by means of operands of the
form

keyword.procstepname=newoperand

where keyword is the keyword of the operand which is to be added or
modified, procstepname is the name of the execute statement in the
procedure which is to be modifieds and newoperand is the new operand
value.,

If operands of more than one procedure step are redefined, the operands
must occur in the same order as the procedure steps to which they

applye
Modifying and adding DD-statements in & procedure step.

Operands of a DD-statement of a procedure step can be modified by means
of an overriding OD-statement:

//procstepname.ddname DD newoperands

OD-statements can be added to a procedure step with an ordinary
DD-statement where the ddname is preceded by the procedure step name
and a dot.

Overriding and added DD-statements must be sorted so that DD-statements
belonging to a later step follow those belonging to an earlier step,
and within each step overriding DD-statements must occur in the same
sequence as the overriding DD-statements in the procedure.

Overriding OD-statements of a procedure step must precede added
DD-statements of that step.

Some examples on modifying and added DD-statements are found in 2.%.

2.2 SIMULA System Elements.

The software elements needed to use 360/370 SIMULA are the SIMULA
compiler, named SIMULA, the IBM-supplied Linkage Editor, named IEWL,
and the run~time system load module library, named SIMLIB.

Furthermores the JCL procedures of Appendix J should be catalogued,
is€s put in the catalogued procedure library SYS1.PROCLIB.

2.2.1 Compiler.

The SIMULA compilter will read a SIMULA source program (Appendix A}, and
it will produce one or more of the following items:

a source program listing,

a cross-reference listings

an ob ject module,

a copy of the object module and
a diaghostic message listing.

e
- e

LG TR R)
e Nt St Dot Wt

The parameter string passed to the compiler from the EXEC statement
determines which items are produced {Z2.2.1.11).

The ob ject module is @ machine-language,s non-executable version of the
source program (2.¢2+2).

The source program and cross-reference listings are useful for
debugging and documentation.

When an error or a possible error in the source program is detected, an
error or a warning message (Appendix B) is written. Production of the
ob ject module is suppressed if an error with severity code greater than
3 has been detected by the compiler.

The files used by the compiler are given in Table 2.1«
The return code issued by the compiler is the highest diagnostic

severity code encountered (Appendix B), rounded upwards to a multiple
of %.

G AOH 0B G BB St ST SN Bul Pt B PR S G S bk GmP P het B AR e Rew Gum e Bee o bem

|

into the available memory.

1 f ¥

ddname ! mode ! use !

¥ 11 H

SYSIN ! input ! contains the source program !
t ¥ g

SYSGO I output ! will contain the object !
f ! module produced by the com=- !

! ! piler. f

- ——t ——————t - !
SYSLIB ! input, partitioned ! contains external class !
! ! definitions used in the !

! ! source program. f

! S ! _ - !

SYSPRINT !' output ! will contain the source !
! ! listings the cross-reference!

! ! table and diagnostic !

! ! messages. !

- ! ———— .} —_— — !
SYSPUNCH ! ocutput ! will contain the object deck!
1 ! (identical to the object !

! ! modulel. !

- —t ! - —t
S5YSUT1 ! input, ouput ! temporary data sets used to !
SYSuTz ! ! hold compiler created tables!
SYSUT3 ! ! and partially translated !
SYSUTS ! ! code if these do not fit !
1 ¥ f

| 4 f ¥

Table 2.1:¢

Compiler files

2¢241e1 Compiler parameters.

Compiler control is achieved by means of the parameters coded in the
PARM field of the compiler EXEC statement. The compiler parameters are
a number of wordss separated by commas and with no intervening blanks.

The parameters are separated into two groups, those that are only given
by a keyword (positional keyword), and those that are given by a
keyword and a value (value keyword).

Positional keywords are used to invoke various processing options of
the compiler, and any of these can be preceded by NO which has a
suppressing effect.

Word: Meaning:

LIST an assembly=~like version of the compiled
program is listed on SYSPRINT.

LOAD an ob ject module is produced on SYSGO.

DECK a copy of the object module is written to
SYSPUNCH.

WARN warning messages will appear on the
diaghostic message listing.

SUBCHK instructions to check array indexing are
compiled.

EXTERN the source program on SYSIN is an external
procedure definition.

XREF a cross-reference listing is produced on
SYSPRINT.

SOURCE the source program is lTisted on SYSPRINT.

RESHD reserved words will be underlined on the

source listings This is accompanied by by
double printing and on most systems two
Tines will be charged for each line which
contains a reserved word.

TERM output abbreviated error messages on
SYSTERM«
LONGREAL All arithmetic computations involving real

quantities should be performed in long real
precision.

The following parameters are specified with a value following the
parameters and an equalsign.

LINECNT=n

MAXERROR=n

MAXLINES=n

MAXPAGES=n

INDENT=n

TIME=n

SYMBOUMP=n

n is the number of lines per page written on
SYSPRINT.

n is the maximum number of diagnostic
messages (errors and warnings) to be

printed. Further diagnostics will be

countedy however.

n is the maximum number of lines to be
listed in the source listing.

n is the maximum number of pages in the
source listings If the value is exceeded,
the processing is terminated. n=0 is
interpreted as Yno limit¥.

n is the number of positions that each block
level is to be indented (i.e. shifted right)
in the source listing to show the block
structure of the program.

specifies that the compilation should be
stopped after n/loo cpu seconds. n=0 is
interpreted as Yno limit¥.

specifies that provision of compiler
generated data structures for runtime
debugging is to be mades see section 6.3.

SIZE=(s1hl,s52hZ2ss3h3s54h4455456)

The SIZE parameter controls the internal use
of core by the compiler. The default size
will be appropriate for most purposes,
otherwise see section 2.2.1.2.

RESHD=n

EXTERN=v

specifies special marking of reserved words
in the source listing. The value n has the
following meaningful values:

0 no marking (identical to NORESHD)

1 under line reserved words (identical
to RESKHD)

2 reserved words in triple printing

3 reserved words in lower case,
identifiers in uppercase and standard
names in lower case with capital
letter.

4 reserved words in upper casey
identifiers in lower case and
standard names in lower case with
capital letter.

The underlining of the reserved words in the
compilation listing is only possible if the
applied printer allows printing of more than
one image at one physical line and the
printer chain contains the underscore (_)
character.

Specifies the kind of compilation:®

g¢: main program,

C: external class,

Pt external procedure.

TEXTERN' is equivalent to EXTERN=P, and
*NOEXTERN' is equivalent to EXTERN=(0.

The default parameters and values are:

*NOLIST,NODECKyLOAD yHARN s SUBCHK ;NUEXTERN s NOXREF SOURCE 4
NORESHD »L INECNT=60,MAXERROR=50, INDENT=0",

SIZE parameter

The SIZE parameter is composed of & subparameters, written in the
general format:

SIZE=(slhlys2h2s53h3s56h4,;55556)
Each si (i=1,2seee56), stands for a value of the form dddysd (a decimal
integer) or ddde¢.«dKs where K means multiplication by 1024, or it may
be omitteds leaving the default value unchanged.
Each hi (i=1,2,3,4) is either YHIY or omitted.
YH1" means that the corresponding area or areas should be placed in LCS
(large core storage, hierarchy 1). Otherwise the area(s) are placed in
HSS (high speed storage, hierarchy 0).

Trailing commas need not be written.

The subparameters have the following significance (refer to “DEFAULTY):

sl DBSYMBUFL lTength of buffers for SYSUT1 and SYSUTZ
‘ (intermediate language symbols). Preferably

a multiple of 16.

s2 DIDBUFLE lTength of buffers for SYSUT3 (idenfifier

Tist). Should be a multiple of 16.

s3 SYSFREE work area size for system use. Must accom-
modate one or two buffers for each of SYSGD
and SYSPUNCH (if used)s in addition to some

space for transient system modules.

sS4 COREMIN this is the minimum work storage needed by
the compiler. If DIDBUFLE and COREMIN have
the same storage hierarchys and COREMIN <=
LIMBLKSZ, then the actual min. work area
size is (2*%DIDBUFLE+COREMIN) except in
passes 152 and 9 because SYSUT3 buffers are

released when not in use in that case.

s5 COREMAX maximal amount of core requested in any
hierarchy. Must be larger than the sum of
component areas in the respective
hierarchies. The effective components are:
1%SYSFREEs 1%COREMIN, 2%*DIDBUFLE,
4%DSYMBUFL s 8*MAXERRGR.

sé LIMBLKSZ largest block size allowed to be written on
SYSUT1-3« A larger value of DIDBUFLE or
DSYMBUFL forces the corresponding file to be

kept entirely in-core.

Default values of SlyevesS6 are installation dependent, ands for the
sake of efficiency, it is important that any change in buffer size etc.
should be reflected in the corresponding DD statement.

2elel Lfnkage Editor.

The Linkage Editor is an 1BM-supplied program which reads the ob ject
module and produces an executable ob ject program.

An executable program is always a member of & program Iibrary on
direct-access secondary storage. In IBM terminclogy it is called a load
module, since it has a dtfferent organization from an ob ject module and
it can be loaded into core by the control program.

The ob ject module (primary input) is read from a file with ddname
SYSLIN. Additional input is taken from a loaded module library
identified by the ddname SYSLIB to resolve external references
(automatic tibrary call)l. The load module produced is put in the
library identitied by ddname SYSLMOD, under a name given in the
OD-statement.

Information and diagnostic messages, as well as an optional map and
cress~ reference listing, useful for debugging on the machine-code
levels, are printed on a data set with ddname SYSPRINT.

The Linkage Editor will optionally perform a large number of functions
requested by control statements in the primary input. One of these
functionss overlay editings is described in Appendix E, while the
remaining functions are described in (10).

2.2.3 Object program.

The ob ject program output from the Linkage Editor is an executable
program corresponding to the source program. When this program is
executed by means of an execute statement, the machine equivalents of
the SIMULA statements will be executed. The PARM operand of the execute
statement can be used to control the storage setup and the amount of
debugging information produced (2¢2.3¢1).

The return code to the operating system can be used in COND operands of
following job steps (2.2.3.2).

If a run-time error occurs during the execution of the object program
it is terminated at once and a diagnostic message is printed tegether
with programmer controlled debugging information on a file identified
by the ddname SYSOUT (Section 6).

The run-time system is assigned the three letter prefix 2YQ, occurring
in all diagnostic messages and control sectioh names.

2+2¢3.1 0b ject program parameters.,

The parameters to the object program are given by the PARM operand of
the execute statement in the form of a character string enclosed in
quotes. The character string consists of keyword operands separated by
commas with no intervening blanks. If a permitted keyword is omitted,
the default value of that operand is used. The permitted keywords and
~operand formats are shown below.

DUMP=digit The DUMP parameter controls the post-mortem
dump (see section 6.2). The digit is
031425336,5546 Oor 7. Default value is 1,
giving a diagnostic message and a register
dump.

HIARCHY=0 or 1 In a system with LCS support this operand
determines the hierarchy of the SIMULA
working storage. The default value is O
(fast core storage).

LINECNT=unsigned integer

The unsigned integer is the initial value of
the variable LINES PER PAGE of a printfile
ob ject.

60 is the default value.
MAXPAGES=unsigned integer

The amount of user program output on SYSQUT
is controlled together with all other
printfiles. If the value is exceededsy the
processing is terminated. A value of zero
means Yno limit"Y.

SIZE=(qlsq2,yq3)

ql

gl

q3

This operand controls the partitioning of
available storage into SIMULA working
storage and system free storage. The size of
the SIMULA working storage is fixed during
executions and is used for declared
quantities, texts,s arrays and contrel blocks
for program sequencing and the sequencing
set, see section 2.2.4 for further details.

qlsy g2 and g3 are unsigned integers,
optionally followed by the letter K
indicating multiplication by 102¢4.

Only those of the sizes which are required
may be specified, howevers only trailing
commas may be omitted.

All sizes are measured in bytes.

is the maximum expected sum of the sizes of
all blocksy arrays, texts and temporary
results in the SIMULA program. If this size
is exceeded, the object program is
terminated.

If gl is cmitted it is set equal to g3.

is the minimum size of the system free
storage. It should be large encugh to
accommodate access routines, 1/0 buffers,
and all GETMAIN, LINK and LOAD requests from
non-SIMULA external procedures.

g2 is set to 10K if omitted.

is the desired size of the SIMULA working
poole If g3 is omitted all storage except
that defined by g2 is allocated.

If q2 and g3, are both specified, g2 takes
precedence if the sum of g2 and g3 is
greater than the available storage. If the
sum is lesss g3 takes precedence.

TRACE=unsigned integer

TEST
NOTEST

This operand determines the size of the
tracing buffer for control and dataflow
tracing (See section 6.3},

print header lines prior to the first line
of the ,

program cutput indicating the compilation
datey release identification and the coptions
in force and traling lines indicating the
total exectuion time, return code and the
time spent in garbage collection (if anyl.

TIME=unsigned integer

SYMBDUMP=digit

2e24¢3.2 Return codes

set cpu~time limit for execution in
hundredths of seconds = the default value =
no limit. Appropriate diagnostics and
optional dump are obtained in the case of
limit overflow rather than abnormal
terminations thus facilitating the location
of unintended infinite loops.

specifies the level of information to be
given in a post-mortem symbolic dump (see
section €.%4). The digit is O0s 1y 25 34 45 5
or 6. Default value is 3, giving the heading
of blocks on the operating chain and a
symbolic dump of the local quantities in the
involved blocks.

The default values indicated are common
standard. They can, however, be altered to
any other default values at system
installation using the SIMULA system macro
SIMRDF which is a standard part of every
system delivery. The same macro also allows
alteration of the standard ddnames of the
RTS files.

Thexabject program passes a return code to the operating system
indicating the way the program was completed.

Code: Meaning:®
0 Successful completion.
4 One or more edit overflows occurred.
8 The program was terminated because of a run'timé
error.
12 Une or more edit overflows occurred and the program

was terminated because of a run-time error.

2+2+4 Storage management under RTS.

The following is a simplified scheme of the storage allocation during a
SIMULA program execution:?

compi led SIMULA program

——

compi ler produced control
tables

. A e W

£

cargao table (used for-
diagnostics)

ot i . st i, e St e . . S s e S

RTS support routines &
fixed storage area

W A Gk AR Yes R AR B Gl

55 SIMULA free storage (aseg
for 0S interface)
g3 ! SIMULA working storage

B E MR S G DR Gl B P S B Gl Gt A BB SR B
GRS B B SR EE RE S TS G Bl S Swk Bomk R Remt Rem

——— e . e ——— B

This figure illustrates use of storage in the case where a SIMULA
program is executed in a separate JCL step (it has to be modified
accordingly for situations where the execution is invoked using the 0OS
loader or NCC's utility SIMCNT)}. In this case the value.of g is equal
to the size of the region allocated to this task by the operating
systems

The size of the SIMULA free storage is 10K by default. If more core
than g2 bytes is needed for 0S interface routines (e.g. when performing
1/0 using extraordinarily large buffers),; the execution terminates
abnormally {(usually with the System Completion Code 804).

The SIMULA working storage is by default the largest contiguous area of
core left within the region after all other core requests are
fulfilled, and its size is printed in the RTS header.

The internal organisation of the SIMULA working storage is as follows!?

Pool 1

e — . e o e e = . S St et

woorem s (T e s we |
[y
OB KW CTE A S SN B Rwe
- AL B L L)
QR R AR S S PR Bem som

Suw G pen
L L B 1

W ree pen v s LT sew aem dmm som bem tme wa |
[FL

. o pem
©
8
o
s8]
P b SR awm G bom

~-h
<«
-
&%)
”»

Pool 1 is used for block instancess array and text objects and
temporary results; poecl 2 is used for control blocks used by the RTS
work ing storage management system. The governing idea of this system is
that pool 1 and pool 2 are extended in the course of program execution
~in the respective directions indicated by arrows in fig. 2 until they
use up all the working storage area. The garbage collection is then
automatically performed which deletes all unreferenceable data
structures so that further extensions of the pools are possible. If
garbage collection does not result in a sufficient gain of corey the RT
error ZYQO017 (STURAGE EXHAUSTED) is forced.

Furthers it is the user's option to set up a limit for pool 15 namely
the value of gl in fige 2. If this is done and pool 1 reaches this
limit in the course of the program execution without garbage collection
being able to compress pool 1 beyond this limit, the RT error ZYQO018
(DATA LIMIT) results.

The value of ql is zero by default, which the RTS interprets as "no
pool 1 limit" and allows pool 1 to expand until it reaches pool 2.

A user may exercise control over the RTS storage management via the
parameter SIZE, where the respective values of gl, q2 and q3 may be
specified in the form of subparameters, see section 2.2.3.1.

A user should bear in mind thatt

- the range of the values of the respective subparameters is
dependent on the program size, the size of the requested RTS
support and the region size.

- if both g2 and g3 are specified, g2 takes precedence if the
sum of q2+qg3 is greater than the available storages otherwisey
q3 takes precedence.

- the main storage request issued by the RTS via GETMAIN on
behalf of the SIZE subparameter g3s is conditional and no
extra action is taken if the requested amount of the main
storage is not availabledM

2.3 External procedures and classes.

External procedures and classes make it possible to compile procedure
and class declarations separately.

An external procedure can be saved as an object module (25%. ex. 7) or
as a load module (254 ex. 8).

An external class is saved in an image library.

External procedures can be replaced in a program without recompilation
of the main programs but external classes cannote«

External procedures can be of three different typest SIMULA, FORTRAN or
ASSEMBLY. How to write an external procedure of type FORTRAN or
ASSEMBLY is described in Appendix G.

2.4 Use of catalogued procedures.

The following sample jobs illustrate the use of the catalogued
procedures listed in Appencix I.

The catalogued procedures aret

SIMC compile socurce program,s create object module. The
procedure consists of one procedure step named SIM,
which is an execution of the SIMULA compiler. The
procedure has no symbolic parameters.

SIMCL Compile source and linkedit to executable PROGRAM.
Procedure step names are SIM and LKED. Symbolic
parameters:

PREOG=progname
progname will be the name of the created
program.

LIB=*libname’
libname is the name of the catalogued
library in which the object program is placed.

EXLIB=*libnamel?
libnamel is the name of the catalogued library
from which external procedures are taken.

LOISP=0LD or MOD
OL0: the object program is to replace an
existings identically named program in
the library.
MOD: The ob ject program is to be added to the
library. :

SIMCLG Compile, linkedit and exXecute object program.
Procedure step names are SIM, LKED and GO. Symbolic
parameter:

EXLIB=*1ibname!
Name of library from which external
procedures are to be loadede.

SIMG Execute @ SIMULA ob ject program from a load module

SIM

SIHM

library. The only procedure step of SIMG has the name
GO. Symbolic parameters:

PROG=progname
Name of program to be executed.

Lig='libname*
libhame is the name of the load module library.

e Compile cource and execute the LOADER program (which
combines the steps LKED and 60 in SIMCLG). Step names
are SIM and GO. Symbolic parameter same as in SIMCLG.

A one-step JCL=-procedure which makes use of a special
program called SIMCNT.« This program is a standard part
of every SIMULA systems starting with release 3.0. For
details on this procedure, see section 2.6el.

’

Notes The mandatory job statement has been omitted in all

Explanation

the following examples.

t t
vt /78 EXEC SIMC,PARMSIM="NOLOAD:XREF" 1 !
! //SIMSYSIN (313 2 !
! {source program deck> !
Yook 3 !
t ¥

o ————— —— — . 7 7 ol . . e . . -— — et e v s g, e s o,

EX. 1 Compile program tc obtain program listing,
cross-reference listing and diagnostic messages.

(digits refer to line numbers of the example).

1t This line invokes the catalogued procedure SIMC. The
PARM operand of its only step, SIM, is replaced by
*NOLOAD,XREF 'y, which will suppress object module
generation (NOLOAD) eand cause the cross-reference
listing to be printed (XREF}.

2: This dd-~statement defines the source program data set.
The asterisk indicates that the data set follows this
line in the job stream.

3t The delimiter statement signals the end of the source
programe

— ot e —— - . i e o o, o T — " — o ——— ——

t
' //86 EXEC SIMCsPARM.SIM='DECK,NOLOAD® 1
1

t

1

//SIM<SYSPUNCH DD DSN=MYSAVE,UNIT=3330~-1,=-~ 2 !

! //SIMCSYSIN DD % 3 ¢
! <{source program !
LA 4 !
t '

Ex. 2¢ Compile and save program,.

DAY

When the program has been found to be free from errors, the object
module can be saved. This will mean thaet when the program is to be
exXecuted it is not necessary to recompile it each time.

1t Since we want to produce an object module but not load
ity the parameter to the compiler is 'OECK,NOLGAD'.

2: This DDO-statement has been added to the procedure step.
SYSPUNCH is the ddname on which the module is stored.

3 and 4:
Same as 2 and 3 in the preceding example.

t ¥
' //A EXEC SIMCLG 1 !
! //SIMJSYSIN DD 2 !
! {source program> !
P /% 3 !
! //GO.SYSIN DD 4 !
! {test data> 5 !
e 6 :
t 1]

Ex. 3t Compiley linkedit and execute.
This is the typical test run in a debugging cycle. The object program
is not saved.

1t This statement invckes the SIMCLG catalogued procedure.

2 and 3:
Same as in the previocus examples.

5t Test data to be read by sysine
6! Signals end og file for sysine.

Hhen you want to use the LOADER program replace SIMCLG by SIMCG in line
1.

The library

|
1
|

//&6 EXEC PGHM=IEFBR14
//7LIB DD DSN=A.LLIB,DISP=(NEWsCATLG)
// UNIT=2314,VOL=SER=XXXXXX;
// SPACE=(TRK+(10,5,20))
//8 EXEC SIMCL,PRUG=PRUOGA,LIB='A.LLIB"
//SIM.SYSIN DD %

{source program>

[N e

SR W e RS T A
G G G ewn S oW

/%

— ——- ——

R RS R R A o AR fam SR S
LL T A T

Exe 4 Create & program library in which an object
program Is saved.

is created in a dummy step preceding the compilation.

1* This statement requests an execution of the dummy
program IEFBR14.

2:¢ The first line of the DD-statement requests the system
to catalogue a new data set with data set name A.LLIB.
A must be the name of an index in the catalogue.

3t The first continuation line defines the disk pack on
which the data set will be putt! 2314 disk pack with
serial number XXXXXX.

4: The second continuation line defines the space
allocated to the data set (section 5.3.2.2). The number
20 indicates that the data set will be a library with
20 directory blocks, which will permit approximately 5
* 20 = 100 different programs in the library.

5¢ This statement invokes the SIMCL catalogued procedure.
The symbolic parameters request the linkage editor to
add the ob ject program to the library A.LLIB under the
name PROGA.

|
|

— " e — e e s v

//A EXEC SIMCL 4PROG=PROGA,LIB='A.LLIB',LDISP=0LD
//SIMSYSIN DD %

{source program>
/%

(%% 3 et
PE PN PR R OTH oy

e S Am G e dam

|
i
t
|
|
|
{
|
|
|
|

Ex. 5¢ Compile and replace a program in an existing
program library.

The first statement of this job requests the linkage editor to replace
the program PROGA in A.LLIB with the ob ject program resulting from this
compilation.

//A EXEC SIMG,PRUG=PRUGA,LIB='ALLIRBY
//G0.SYSIN oD *
{execution data>

Pud b

/%

- P — - — . o . SO S S

Smm S Gam R Sl R
A Som e s SR Aew

Ex. 6! Execute an object program from an old program
library.

When an ob ject program has previously been saveds the above example
shows how it will be executed.

—— - . Bt -— ——

//A EXEC SIMC,PARM.SIM=EXTERHN
//SIM.SYSIN DD %

{external procedure source>
/%
//B EXEC SIMCLG
//SIM.SYSIN DD &

<main program sourcez>
/%
//G0«SYSIN DD %

{test data> 10
/% 11

—— e s ot e o i o ——— o o—— i < o

G S A R R AR R G ST G RS SR G
MO) O AT P L e
AWe A GEm ST Sew TR PR g AW fuek fow Re o

Ex. 7t Compile and run external procedure and main program.

Statement 1 - 4 can be repeated if there is more than one external
procedure.

e e ———

Pt

//& EXEC SIMCL,PROG=PROCL,LIB='A.LLIB"',

// PARMSIM=EXTERN,PARM.LKED=NCAL 2
//SIM.SYSIN DD o 3

{external procedure source> 4
/% 5

e Rwm AR RnE P aem
A N R o AR ke

s o s e e e et o i st —— e .t . ol e e s . s

Ex. 8¢ Save an external procedure in a program library.

1t Add the operand LDISP=0LD if an old procedure is to be
rep laced.

2% The linkage-editor parameter NCAL prevents addition of
run=time system elements. This will save space in the
library. The operands must occur in this order since
the SIM procstep precedes LKED in the catalogued
procedure.

——— —— s i st s v —— -

//A EXEC SIMCLG,EXLIB='A.LLIB®* 1

//SIMSYSIN DD 2
{source program>

/%

//GO.SYSIN DD * 3
{test data>

/%

—— — p—"

G AR Sk SR S G PR A R
R S S St G G AN bewt B

Ex. 9¢ Compile and execute program using external
procedures in a load module library.

The external procedures used must have been put in A.LLIB using the
method of Example 8.

The name specified in the PROG operand of Example 8 must coincide with
the identifier of the procedure and with the <external identifier> of
the external procedure declaration in the main programe.

2e%s1l Using the SIMULA system with the JCL procedure SIM

SIM is a one-step JCL procedure which makes use of a special program
called SIMCNT. The basic action of SIMCNT is to retrieve input programs
and process them, one after another.

There are four modes in which SIMCKNT can operate:d

input program is in source code

input program is an object module

input program is a load module

input program is a source code which is to be updated
prior to further processing.

sour ce mode
cb ject mode
lcad mode

update mode

Wi

The operating mode may be freely changed for any programe.

Program processing in the source mode consists of compilation (using
the SIMULA compiler), loading (using the 0S LUOADER) and executione« Once
compiled and loaded, a program can be eXxecuted an arbitrary number of
times. The above mentioned pattern of program processing is cut short
if either compiler or loader actions were not successfull or if only
compilation was requested; processing continues with the next program
in such a case. In object mode, program processing consists solely of
locading and subsequent executicn (possibly multiple executions). In
load mode, the program is loaded from secondary storage into core
(using the LOAD macro) and then executed the specified number of times.
In update mode, the source program is updated (using the IEBUPDTE
utility) and the new master, which is a temporary, sequentially
organised data sets is then treated as an ordinary input program in
source mode unless updating was not successfull.

The function of SIMCNT and mode switching are controlled by a trivial
command languages sentences of which are passed to SIMCNT via the SIM
symbolic parameter P, which is positioned at the beginning of the EXEC
PARM field. A sentence of the SIMCNT language is a string of arbitrary
length consisting of the letters Cys U, L, U, E and unsigned integers.
An empty string is also legal and it is interpreted as digit 1. In
addition, program names (terminated by commasy if necessary) may also
be part of the control string.

The meanings of the respective symbols are as follows?

C oeee switch to source mode:
retrieve and compile a source code programe.

0 e switch to object mode:
retrieves load and execute an object program.

L oses switch to locad mode:
retrieve the program whose name follows the L (and is
delimited by a comma if not terminating the string)s and
execute it.

U see switch to update mode:
retrieve and update a source program, then compile the updated
version.

E see if in source or update mode:
(toad if necessary and) execute the program which was compiled
lasts otherwise execute the last loaded program.

unsigned integer

e if followed by any of the above control letters, indicates
repetition of the associated action (e«g. 2C means CC, 3E
means EEE, etce)d if terminating the control string! perform
CE the requested number of times (i.e. compile/load/execute
the specified number of programs, e.g. digit 3 at the end of
the control string stands for CECECE).

The physical location of prograams to be processed by SIMCNT depends on
their processing mode?! the program to be processed in load mode must be
a member of a load library specified as or concatenated with STEPLIB;
the program to be processed in update mode must be a (member of &
partitioned) data set specified as (or concatenated with) SYSLIB; any
other program must be a sequential data set with ddname SYSINn, where n
is empty for the very first program to be processed or i-1 for the i-th
program (regardless of mode witching). In update modes SYSINNn is used
as a ddname for the IEBUPDTE control statement data set. Execution data
(if any) must be submitted on the following ddnames:?

DATA for the first execution §f the first program (ie.ee on SYSIN]
DATA j for the (j+1)-th execution of the first program {(i.e. on SYSIN)
DATAI j for the J-th execution of the i-th program (i.e. on SYSINI)
Notes:

~ Execution data set ddname conflicts must be resolved by appropriate
sequencing of the programs (e.g. DATAll may be data for the 12th
execution of the first program as well as for the first execution of
the second).

= Syntax checking of the control string is minimal and the effect of
illegal strings is unpredictables.

- The global condition code returned by SIMCNT is:
(max update/compilation ¢c)*100 + (max loading/execution cc) or 1111
in the case of the command language syntax error.

- Control of the processors involved (compilers loader, RTS) may be
exercised in the usual wayys i.e. by specifying requested opticns in
the EXEC PARM field. But remember that this affects all processed
programs equally. (The EXEC PARM field to be used with SIMCNT may
either be empty or of the following formats

PARM=*<{SIMCNT control>/<SIMULA comp. parm.>/<{locader
parms.«.>/<RTS parmse>/<user parms.>"'

Any angle bracketed part may be empty, but only trailing slashes may
be dropped.)

The complete set of control statements for procedure SIM as suggested
in the SIMJCL data set of the release tape are given in appendix I.

Note that the basic set of DD statements used by SIMCNT

is

identical to

that of a standard SIMULA compiler. Providing that SYSPRINT and 3YSGO
DD statements are not altered, SIMCNT cperates equally well with any

compiler version regardless of its default ddnames.

Additional data sets may also be used.

Setting of the RTS parameter TIME

which will

inhibit waste of

is a recommended safety precaution

CPU time if an infinite loop occurs in some
executed program (the time unit used is 1/100 second).

Examples of SIMCNT activation using SIMS

//SYSIN DD
//BATA 0o

/%

- R e KR Vs P fem Gwe

L/A EXEC SIM

e

{SIMULA program>

¢

Cexecution data>

¢ o ———

Ex. 10: Compiles

|
|
1
|
1
|

//7SYSIN DD
//0ATA ob

Rews sws S Sum Gem S tem

//SYSIN1 DD
//DATA11 DD
/%

KR K S S S

S Qe B Bem bem SR Gem Sew

load and execute one SIMULA program

//8 EXEC SIM,P=2,CP=XREF

.
o

{lst program>

5

{data for 1lst program>

¢

<{Znd program>

.
e

{data for 2Znd program>

B B G KD A SR R s BB SR Hes S

Exe 11: Compile two source programss taking cross-

reference listing and execute them.

//C EXEC SIM,P=COE
//SYSIN DD *

<1lst program (source)>
//SYSINL DD %

<ob ject module of the 2nd program>
//CATALIYl DD %

{data for the 1lst exec of 1lnd prg>
//0ATALZ 0D %*

{data for the 2nd exec of 2nd prg>
/%

S S SR hwe B
G D oW AP Sw S SN B P KW pws ¢

S PR R tam Gw® pom Do

|
|
|

Ex. 12¢ Compile one program, then load and execute
twice another program which is supplied in
ob ject module form

. e . s S0 s ppe— -

4

vt //D EXEC SIM,P=tLPROGRAMX 2EC?
! //DATA 319! %

! <{data for 1lst exec of PROGRAMX>
' //DATAY DD 3

t {data for 2nd exec of PROGRAMX>
! //DATAZ DD %

! <{data for 3rd exec of PRUGRAMXD>
t //SYSIN1 BD %

! {source program>

v /%

| 4

R T p— i o et et . e s

VU B Bem S Gem S Gew S Hem BB Haw Sem

Ex. 13! Execute three times PRUGRAMX which has
previously been compiled and linked-edited
(into SIMLIB), then compile a source program

'
' //E EXEC SIM,P=U

! //SYSLIB DD DSN=ULDTEST,DISP=SHR
P //7SYSIN DD

!' «/ CHANGE NAME=TEST,NEHW=PS

'

'

!

1

o pom ReR rew pew

-~ update data statements -=-
«/ ENDBDUP
/%

® e ot o i —— e kst St e —— — — ——

o e e

Exs 14:! Update and compile a source program which is
held under member name TEST in pds OLDTEST.

