- 39 -

CHAPTER 5.

CONNECTION -

5.1 Connection Statements.

The connection mechanism of SIMULA provides a means of inter-
action between processes, A process dan, by connecting another
one, get access to the attributes of the latter,

A connection statement has the following general form,

inspect X when A1 do S1
when A2 ggvsz

[

- when A do S
gtherw;se S‘

where A,, Ay, ..., A are activity identiflers, and 84y S5y

ceny Sn’ and S are statements, A construction "when Ay do 81"
1s called a connegtion clg_gg. There can be any number of

them and must be at least one., The otherwise clause is optio-
nal, '

If the PA of X 1s a process belonging to class Ai, the state-

ment S1 1s executed, and the other statements are ignored.

The connection is sald to be effective during the execution

of Si‘ The value of the element expression X becomes the
~connected element, and the referenced process becomes the con-

nected process If the process does not belong to any of the

classes 1isted, or if X has no PA, the statements 8,, ..., S

are skipped and the statement S is executed, if present,

n

T ——

- 40 -

Each statement S1 1s a connection block., It is interpreted

as 1f 1t were a part of the outermost block of the activity .
Ajy in the sense that the exogenous and endogenous attributes
of the connected process are immediately accessible through
their local names. The block containing the connection state-
ment acts as an outer block, ‘

Another connection statement 1is

 extract X when ... etc

It‘has the same general form as the one above, and also the
same effect, except that the element X is removed from 1its
set, 1f it has a SM and a PA.

If the expression X 1s a process designatoi, the class of the
process is known, In this case the alternatlve connection
clauses can be replaced by the single construction "do 8",
where B 1s a statement serving as a connection block, No
otherwise clause applies in this case.

activate and reactivate statements can Dbe augmented by connec-
tion clauses, If the scheduling is direct, the indicated
active phase is executed before connection becomes effective,
otherwise after possibly while connection is effective.
Connection may become effective even if no event is scheduled,

WLthin a connéction block connecting a class A process the activity
tdentifier A, not preceded by the symbol "pew" or by the symbol |
“"when'", has the significance'of a function designator referencing
the connected element. The same is true for a reference to A
within the body of a procedure declared local to A, when the
procedure is called within the connection blocxk,

e e e e o

- 41 -

Example.

- activate new car do if speed >h50 thén.include(car, left lane)

else include(car, right lane);

where "speed" is an endogenous attributé'of the car process,.

- whose value 1s defined during the first active phase of the

process.

‘Because of its use in connection statements an activity identi-

fier may not be repreéented by a formal parameter., Activity
identifiers are under no circumstances permitted as parameters
to procedures or activities, There is no "activity" specifier
in the language. L E '

5.2 Label Attributes,

The fact that labels, switches and procedures local to the
outermost block of the specified activity Bbdy are accessible
within a connection block, makes it possible to "enter" a
connected process, This can happen as the result of an ex-
plicit go to statement within the connection block, or as a
slde-effect of a procedure local to the activity called within
the connection block,

Let L be a label local to the connected process, Then'"go’to Ly
has the following effects: '

1. The connected process is terminatéd, 1,e. any event notice
referring to it is removed from the S5QS, any reactivation
point for the process is deleted.

2. The current process is terminated without removal of the
current event notice, Connection 1is thereby cancelled,

- 42 -

3. The element reference of the current event notice is re-
placed by a reference to the formerly connected element,
which thereby becomes '"current",

L. An aétive’phase of the formerly connected process éommences
at the specified label L, The system time remains un-
changed,

By this means the reactivation point of a currently passive
or suspended process can be superceded and a terminated process
can be "revived", ‘

5.3 Examples,

1. Procedure Attributes.

Cars are traveling on a road, Each car is characterized
by its velocity V and its position X, The former is a
step function and the latter a continuous function of time,

activity car;

begin real V, Xo, To,

' real progedure X; X 1= Xo + VX(time - To);
procedure update (Vnew),; real Vnew,
begin Xo 1= X; To s1= time} V t= Vnew end} .

To 1s the time when V was last updated, and Xo is the
position of the car at that time,

A L o P

A regular police survey tries to enforce an upper speed | | i
limit Vmax on a bad portion of the road, between X1 and X2,

G e

LTI I

Kl
3
B
5
Y.

. &%

set road, police file; real X1, X2, Vmax,

activity survey (interval); real interval;

begin element Z;

scan: for Z i= first(road), suc(Z) while exist(2) do
inspect Z when car do ’

b A2 XA T 4 X AT e Tt toen
begly update(Vmax); incluue(car, police [ille) enc,
hold(interval); go to scan

end;

Notice that the procedures "X" and "update" referenced within
the connection block are those declared for the currently
connected car. The non-local items referenced within the
bodies of these procedures are therefore the attributes of
this particular car.

2. List Processing,

Let T be a set, some of whose elements are "branch" pro-

cesses,
set T)
activity branch; begin set subtree;~---- end;

T can be regarded as a tree gtructure if elements of a
subtree may be branch processes, The "leaves" of the

tree can be defined as those elements of T or of a subtree
which are not brench processes.,

A tree structure like this can be scanned "leafwise" by
means of a recursive procedure, The following activity
is equivalent to a '"reader" concept found in well known

- 118t processing languages, It incorporates a recursive
scan procedure,

activity leafscan (tree); set tree;
begin element leaf,
procedure scan(S); set S;
begin element X;X := head(S);
for X i= suc(X) while exist(X) do

- 44 ~

inspect X when branch do scan(subtree)
otherwise begin leaf: = X passivate end
end scanj |
scan(tree); leaf: = none | | | }
end leafscan, :

A reader on T can be initialized by the following statements. | |
Tsc := new leafscan(T); activate Tsec)

where Tsc 1s an element variable, Later actiyate statements

on Tsc will step the pointer, which is the endogenous attribute é
"leaf" of the leafscan process, When the elements are ex- '
hausted, leaf becomes none. '

Access.tolphé pointer 1s by connecting the element Tsc, ex- |
plicitly or through one of the following procedures:

element procedure reader(Z); element Z;
ingpect Z when leafscan do reader :i= leaf),

element procedure next(Z); element Z;
‘activate Z when leafscan do next := leaf,

The expressions reader(Tsc) and next(Tsc) both evaluate to
the element of the tree T presently under observation. The
latter has the side effect of stepping the pointer,

Notice that the pointer 1s stepped before the element value is
assigned, since the activation is by direct scheduling,

In general list structures of processes can be formed by means
of set or element attributes, The user has complete freedom

when deflning the structures of the various components of a list,

i
|
i
i
i
i

‘..-45-

The list processing facilities of SIMULA can be.exploited fbr

'1_their‘own sake with no reference to the discrete event system
- concept. In such cases it may be natural to define the pro-
- cesses on a list as passive data carriers,

:3. Sorting,'

Given a set, fileil, containing references to "record" processes ‘
(and possibly processes of other classes), We want to establish
another set, flle2, of references to these record processes, sorted
against a real attribute "key" with nonnegative values, - ’

set filel, flle2;

activity record; begin real key; --- end;

The following piece of program performs the sorting by means
of the 8QS. It 1s assumed that all record processes in the
system are passive, |

fiie2 is empty initially,

begin element X R 4

for X ;= first(file1), suc(X) while exist(X) do

ingpect X when record do activate X delax key
X 1= current; Y 1= none; '
for X 3= nextev(X) while exist(X) do

inspect X when record do

begin cancel(Y); Y = X; include(X, file2) end;
cancel(Y) end;

The latter inspection clause only serves to skip processes
referenced in the SQS not belonging to the '"record" activity,

