- 15 -

CHAPTER 3.

ELEMENTS AND SETS,.

3.1 Basic Concepts, .

The element/set mechanism of SIMULA makes’it'possible to form
and manipulate groups of objects in discrete event systems,
The objects are processes. '

The actual contents of a set are references to processes, rather
than the processes themselves, An individual reference is
called an element, A set is an ordered sequence of elements

and can contain any number of elements, Its contents will
change dynamically.

An element can be a member of at most one set, However, any
number of elements can refer to a given process, which means
that the process can "be" in any number of sets at a given time,.
There can be more than one element referring to the same process
in one set,

Elements can be referenced dynamically through element expressions.
This is a means, and the only means, of referencing individual
processesz ocess 1 lways referenced indirectl

gxgam; reference to_an element, i,e, by evaluating an elament
expression,

A process will remain in the system only as long asﬁit'ié refe-
renceable, which is (at most) as long as there is an element in
the system referring to it, T

- 16 -

The element/set concepts together with the "connection"
mechanism described in CHAPTER 5 make SIMULA a very general
list processing language. This 1is demonstrated in section 5.3,

3.2 Eiements and Element Variables,

Elements are generated dynamically as the result of evaluating
certaln generative element expressions, The process reference
of a glven element remains fixed, but its set membership may
‘change dynamically as the element goes 1in and out of sets or
changes its position in a set

An element of a set definee 1ts own successor and predeceseor
- in the: ‘set, It contains three references in all, as shown
by fig. 1. |

reference to succeding element 7

reference to preceding element

reference to. process

v

Fig, 1

The references to the succeding and preceding elements define
the get membership, SM, of an element, The process referenced
1s often called its process aspect, PA, ' '

“&n element which 1s currently not a member of any set 1s said
to have no SM, The set membership references are both to

"no element", Certain elements have no PA, 1,e, the process
reference is to "no process’,

- 11 -

‘An element value 1s defined as elther an individual element or
"no element"., The latter is denoted "none"., none has no PA
and no SM, '

An element value is a value in the ALGOL sense of type "element".
It 1s obtained by evaluating an element expression and can be
assigned to an element variable in an assignment statement of

the usual form,

< variabled> 3= < element expressiond>

The assignment of a given element as the value of an glement
~variable can alternatively be interpreted as the assignment of
the varilable as a name on the element. If the element has a
PA ‘the variable functions indirectly as a name on that process,

element varlables can be simple or subscripted, Typical
declarations are

element X,Y,Z; element array crane [1:n);

The symbol "element" 1s a type declarator in every respect
similar to the declarators real, integer, and Boolean of ALGOL,

3,3 Sets,

A set is a cyclic sequence of elements, of which all except one
have process aspects, The one with no PA 1s called the

gset head, It is always present and 1s always the same element
for a given set,

- 18 -

successor

1 predecessor

set head

successor successor successor —

predecessor predecessor predecessor

process process process

U 3 Y
Fig, 2

The set head 1s to be regarded as a dummy element, it functions
as the "end" of the set in both directions, An empty set is
represented by a sethead which is 1ts own successor and prede-
Cessor.' In a non-empty set the successor of the set head is
called the first element, and the predecessor of the set head is
~called the last element of the set, |

A set has fixed name, called a gset designator, which can be
simple or subscripted, Set declarations are syntaetically
slmilar to those of simple and subscripted variables,

set S,T,U; set array filef[i:n];
However, a set designator is not a variable 1n the sense that
"set values" may be assigned explicitly, There 1is no "set
expression" concept in the language, and thus no "set procedure",

Although the contents of a set may differ from time to time, a
set designator denotes the same set throughout its scope. The
set head is generated as a result of the declaration and stays
in the set all the time, A set is empty initially,

-19 -

The call by value of a set parameter has the signifioance of
assigning the formal parameter as a local name on the set
denoted by the actual parameter, If the parameter is an
exogenous attribute of a process, it will be seen that the set
may remain in the system longer than the block in which it was
declared, -

A set ceases to exist when it looses 1ts (last) name, because

of exit from a block or because a process leaves the system.,
Then all its elements loose their set membership including the
~get head. The latter becomes a -void element having no PA and
no SM. The elements, or some of them, may remain in the system,
See also section 10.3. ‘

%txlement Expressions.

As: previously stated elements are generated as the result of
evaluating certaln element expressions, called generative
expressions, or as the dynamlc result of a set declaration,
A generated element will stay in the system as long as 1t is

referenceable.

A reference to an element can be through

1. an element variable, or

2. set membership, or

3, the sequencing set (see CHAPTER L), or

4. connection (see CHAPTER 5). “"“»\

There are element expressions corresponding to each of these
cases,

Most element expressions are functlon designators referencing
element procedures, The only exceptions are. the element
“econstant" none, element variables (and value parameters), pro-

cess designators, and activity i{dentifiers in certain contexts,

- 20 -

~Most element procédures are expressible within the SIMULA
Alanguage in terms of baslc procedures expressed in machine code,
For convenience also a number of non-basic element procedures are
expressed in machine code, and may be'considéredApart of the

- language, The same is true for procedures of other kinds dealing
‘with elements and sets. ‘

Throughout the remainder of this report the letters X,Y,Z are
used to represent g;ement expressions, The letter S usually
denotes a set,

[
T

3.4.1. Generatlve expressions, J |

The value of a‘generative'expression is a new element, i,e, an
element whose identity differs from every other element currently
present in the system, SIMULA has two generative expressions: ;

Te Procéss designator,

A process designator has one of the forms
A(<actual parameter 1ist>) or new A(<actual parameter list>)

where A is an activity identifier, If the activity A has no
parameters the process designator Ls simply
A or new A,

) - The symbol "new" only serves to resolve an ambiguity of the ' =
identifier A inside the activity declaration A itself (see L)
and inside a connection block connecting a class A process
(see CHAPTER 5), in which cases the construction "new A" must ‘
be used, Elsewhere the symbol new is redundant, but can often Vo
be used to advantage to improve readability, *

The element value of a process designator has a PA, but no
SM, It refers to the process generated as a result of the b
evaluation, |

- 21 -

Examples.

a. new clerk(true, false, 10),
where

activity clerk (redhaired, greéneyed, thumbs);
Boolean redhaired, greeneyed; integer thumbs;

DEgIN ~e e e e end,

b, X =Y = new A; Z 1= new A;

Now X and Y denote the same element; Z denotes another one.
The two elements refer to different processes,

2. proc(X).

proc(X) is a new element with the same process aspect as X,
and no SM., If X has no PA, the value 1is none.

Examples,

a. X 1= new A] Y 1= proc(X); 2 = proc(X);

Now X, Y and Z denote different elements, which all refer to
the same process,

b. X 1= proc(new 4);

The element generated as the result of evaluating the'process
designator can not be referenced and therefore will leave the
system, The element referenced by X remains, and so does the
generated process,

3.4,2 Set membership references,

1. head(S) denotes the set head of the set S, It has a SM
and no PA, and functions as a dummy element always present
in the set, '

- 22 -

2. suc(X) denotes the successor of X, If X has no SM,
suc(X) is none. If X has a SM, suc(X) is a unique element
having itself a SM,

3, pred(X) denotes the predecessor of X, If X has no SM,
pred(X) 1is none. If X has a SM pred(X) is a unique
element having itself a SM,

suc and pred are reciprocal functions, It 1s more a convenlence

than a necessity to have both as basic procedures,

3.5 Boolean expressions,

The following are basic Boolean expressions applying to ele-

ments., '

1. "X = Y" s trug if either X and Y denote the same element
or both values:

2., "X #‘Y" is theﬂnegation of "X = Yn,

3. same(X,Y) 1s true if either X and Y reference the same
process or nelther has a PA,
"X = Y" implies same(X,Y).,

4, similar(X,Y) 1s true if either X and Y reference processes

of the same class or nelther has a PA,
same(X,Y) lmplies similar(X,Y),

Examples,

"X # X" 4is true if X 1is a generative expression,

same (X, proc(X)) is true if X evaluates to the same element both
times, ’
similar(pnew A, new A) 1s true,

same (head(S), none) is true, but "head(S) = nope" 1s false.

-.23 -

3.6 Element Operations.

The following statements are the basic operations available
for manipulating sets. The procedures operate on the SM of
elements without changing their identities,

1. precd(X,Y)

~If X has a SM, say, pred(X) = Z, Z # none, and Y has a PA
and no SM,
then suc(Y) becomes X and pred(Y) becomes Z, and the SM of
X and Z are modified so that pred(X) and suc(Z) both become
Y. Otherwise the statement has no effect,
In the case quoted Y is glven a SM, intultively by inclusion
in a set between X and its predecessor,

- Example.

The statement pred(head(S), new A) will include the generated
element as the last one of S, The previous last one becomes
next to the last.

2, remove(Y)

If Y has a SM and a PA, say, X = suc(Y) and Z = pred(Y),
X,Z # none, then suc(Y) -and pred(Y) become pone, suc(Z)
becomes X, and pred(X) becomes Z, Otherwise the statement
has no effect, '

In the case juoted Y looses its SM or, intuitively, Y 1s
removed from the set of which it was a member, and the
former predecesscr and successor of Y become consecutlve

elements,

- 24 -

The fact that neither of the above statements has an éffect if
, Y has no PA, shows that only elements referring to processes

can go in and out of sets, A set head must remain in 1its set,

and there can be only one such element in the set,

We emphasize once more that the statements operate on properties
~ of elements, without changing the identities of these elements,

Example.
pred(2,X) 5 Y: = X 3 remove(X);

Now Y has no SM. Reason: X and Y have the same element value,
i.e. they denote the same element. :

3.7 Non-E entary Procedures. . S ‘ i

~ The followihg procedures are available as machine code proce-
! dures, although they are all expressible in terms of basic *
SIMULA concepts.

~ @lement procedures

1. first(s) is equivalent to suc(head(S)).
2. last(S) ‘ is equivalent to pred(head(S)). |
3. successor(n,X) \ is intuitively defined as sucn(X), i.e, by

stepplng abs(n) places forward or bagkward according to the
~sign of n. The stepping is discontinued if and when the
set head is reached, '

element procedure successor(n,X); value n, X;
;g&eger n; element X;
begin integer 1ij;

i
B
paat
e

- 25~ .

i: = 03

Cfor i: = i+1 while 1 < abs(n) A —1same (X, none) do
X: = if n > O then suc(X) else pred (X);
successor: = X; end; -

4. number(n,S) is equivalent to successor(n, head(S)), This
function defines a consecutive double numbering of the
elements of a set, such that first(S) is "number 1" and
last(S) is "number -1",

5. member (X,S) denotes an element of S with the same PA as
that of X, If there is no such element the value 1s pnone.
If there 1ls more than one, the element is taken which has
the smallest positive ordinal number.

element procedure member(X,S); value X,S;
~element X; set 53

begin element Y; member := pone;

for Y := head(S), suc(Y) while Y # head(S) do

if same(X,Y) then begin member := ¥Y; go to
fin end;

fin: end;

Boolean progcedures ’
1. exist(X) is equivalent to -1same(X, none); i.e. the

value is true if X has a process aspect,

2, empty(S). is equivalent to -1 exist(first(S))

integer procedures

1. ordinal(X) denotes the positive ordinal number of X, if
X has a PA and a SM, Otherwise the value is Zzero,

integer procedure ordinal(X); value Xj element X;
begin integer i3 1 := 03 X 1= suc(X);

for X := pred(X) while exist(X) do 1 := 1+1;
ordinal := i end; ‘ |

- 26 -

‘2., cardinal(S) denotes the number of (non-trivial) ele-
ments of S. It is equal to ordinal(last(S)).

Statements

1. precede(X,Y). 1is equivalent to precd(X,Y), except that Y
is first removed from the set of which it was a member, if

any.
progedure precede(X,Y); value Y3 element X,Y;
. begin remove(Y)j prcd(X,Y) end;

2, follow(X,Y) is equivalent to precede(suc(X),Y),

'3, transfer(X,S) is equivalent to precede(head(S),X), X is
removed from its set, if any, and included as the last | |
element of S. o |

4, 1include(X,S) will inolude a new element with the same PA
as that of X, or X itself, as the last element of S, de-

" pending on whether or not X has a SM already. :

procedure include(X,S); yalue X,S;
element X; set Sj

 pred (head(S), if suc(X) = - ;
none then X glge proc(X)); :

5. clear(S) will remove all elements of S, making S an
empty set, '

procedure clear(S); value S; set S;

begin element X;
for X: = first(S) while exist(X) do remove(X) end,

3.8 Examples.
1. The verdict.
§é§ herd, barn, stable; element X, sheep;

- G DA M WD) N TR A S IR G S EDS W T Gy G ene s SN SR e R D B s GES G G Sen BB - - o

for X: = first(herd) while exist(X) do

transfer (X, if similar (X, sheep) then barn glse stable);

-27 -

Notice that the elements of the herd set are removed by the
transfer statement, so that the expression first(herd) evalu-
ates to another element each time.

2, Set subtraction.

Those elements of S are removed that represent processe:
also in T,

set S, T} element X,

X: = head(S);

for X1 = suc(X) while exist(X) do

if exist (member(X, T)) then begin X 1= pred(X), remove
(suc(X)) end;

Notice that the remove procedure will terminate the scan loop
1f applied to X itself, since after removal of X suc(X) is pone.

The following i1s a simpler way to achieve the same thing, which
will work provided that there 1s at most one reference in O
to each process in T,

for X: = first(T), suc(X)while exist(X) do remove(member(X, 5));

