-89 -

CHAPTER 12,

A SIMPLE SIMULA DESCRIPTION

12.1 A Simple Disease System,

As a flrst example on a SIMULA system description, let us
consider a simple dlsease system:

Infections occur in a limited population with a time di: tri-
bution given by a Poisson distribution with paramete- '"real p'
Infected persons do not infect other pefsons, and they become
immune 1if they recover from the disease,

When a person 1s infected, no symptoms appear the first 3
days. In the following 7 days (days 4 through 10) the
probablility of death 1s given by an arruy:

array mortality [H y 10) .

As mentioned in sectlon 1,4 every entity which carries out
actions and/or 1s a carrier of data in SIMULA will be called
a process, All processes characterized by the same data
structure and having the same pattern of behaviour (operatior
rule) are sald to belong to the same activity.

Obviously we have to introduce the infected persons as pro-
cesses, Since the course of development of the disease 1is
the same for all persons, they all belong to one activity:

activity infected person;

-90-

Apart from the "main program" taking care of the initializ-
ation of the system, the introduction of new "infected persons"
and final analysis of the results of the disease, we have no
other entities execﬁting actions or carrying data, and
consequently no more activities,

We start our formal description of the system by writing
SIMULA begin (Line 1)
telling that SIMULA concepts are to be used,

"~ the next line we declare the '"system variables", variables
which shall be avallable for use everywhere in the system:
the size of the population (named "population"), the number of
not yet infected persons left in the population (named "nr un-
infected"), the parameter "p" of the Poisson disease occurence '
distribution, the table of real numbers giving the mortality
, the n-th day of the disease (named mortality [n]), and fi-
‘nally two integer variables Ul and U2 used in selecting the
streams of random numbers to be used in the random drawings per-
formed (see section 7.1).

Ut and U2 are introduced because of the possible simulation
of the system, They have no interpretation in terms of the

stem which is described,

The declarations of system variables then become:

integer population, nr uninfected, U1, U25 (Line 2) | _
real pj; array mortality [4% : 10]; ‘ (Line 3) |

After the disease has disappeared we want to find out how many
persons died and how many were cured., For this we need to
establish two lists of references to these categories of per-
~ans, As mentioned in section 1.4 the SIMULA sets will

-91-

sérve this purpose. Since all processes must be able to
refer to these sets, they are declared as "system sots':

 set dead, cured; (Line 4)

Notice that the set declarations introduce empty sets,
whereas the values of variables are undefined till an assignment
of a value 1s made.

We may now start the description of the "infected person"
activity by writings ‘

activity infected person, (Line %)

We have to keep track of how long the person has been infected,
since this determines the mortality of the disease at any

glven stage, Hence the infected persons are characterized by an
+integer attribute "day": '

 begin integer day; (Line 6)

(The begin indicates that the description of the endogenous
attributes and operation rule of the activity starts herse).

When stating the operation rule for a SIMULA activity we are

able to take a completely "local" view, and concentrate upon

the sequence of actions which may be carried out by an indi-
vidual process belonging to the activity, Since all actions

are carried out by processes during active phases (events) and

s process elther belongs to an activity or is the unique "main
program" process, all actlions in the system will be described by
giving the operation rules of the activitles and the maln program,
The proper interlaclng of events will be achieved by the
sequencing statements (see CHAPIER W),

During the first active phase of an Infected person the following
statement 1s executed: ,

The number of uninfected persons 1is reduced by 1, since a new
infected person has become active,

nr uninfected := nr uninfected - 1} (Line 7)

-92-

No more actions are to be executed until 3 days have passed
by. We shall "hold" the sequence of actions for 3 days, the
process "suspends" itself for 3 days. This is described by
the statement | '

hold(3); (Line 8)

When the 3 days have expired, actions and decisions have to
be made the following 7 days

for day := 4 step 1 until 10 do (Line 9)
Each day there is a probability, mortality [day], that the !
person dies, . If this happens, a reference to him is included
in the set "dead" and all further actions are stopped, he 1is
"terminated".

In other words there is a probability, mortality {day], that
these actions occur., This is equivalent to making a random
drawing with probability mortality [day] of getting true as
result, and only execute the actions if this turns out to be

the outcome. For this purpose we may use the "draw" -'procedure

described in section 7.2:

if draw(mortality [day], U1) then (Line 10)
begin include(current,dead);
terminate(current) end (Line 11)"

"ecurrent" always references the process which currently is active,
that is, the process in which the reference is made. From the
process' point of view, "current" means "myself",.

If the result of the drawing is false, further actions are
suspended till the next day:

else hold(1); (Line 12)

-93-

Then, if the previous day was not the 10th, "day" is increased
by 1 and Lines 10-12 are repeated.

If the previous day was the 10th, we have completed the for -
statement starting at Line 9, and we proceed to day nr. 11,

Now the infected person has survived and 1s cured and immune,
and he may include a reference to himself in the '"cured" set:

include(current, cured) (Line 13)

This is the last action relevant to the disease performed by
the infected person, and we may conclude the operation rule by

end; | (Line 1k4)

The infected person has no more actions prescribed for himself.
He is terminated, but still remains in the system as a data
structure, since he 1s a member of a set,

Till now we have only made declarations: of system variablec
and sets, of data structures and operation rules of processes
which may appear 1in the system, No actions have been executed,

The sequence of statements of the SIMULA block, following the
declarations, 1s the operation rule of a unique process, the
"main program", always present in a SIMULA system description.
Since the first statement after the declarations always 1s the
first statement executed within a block, the first active phase
of the main program always is the first event within a discrete
event system as described by SIMULA, It is bound to occur,

and as first event 1t 1s assigned the system‘time zero,

If other processes are to appear, at least one has to be gene-

rated by the main program and the main program must have at
least one inactive period if events pertaining to other pro-
cesses shall be executed, ’

-94- i

As the process having the "first event", the maln program 1s

used for setting up the initial state of the system, It may : *
also, if desired, be used as a "monitoring" process and for a
final analysis of information collected during the operation

(or simulation) of the system.

The first we have to do to set up the system is to read the |
parameter values from an input devices

read(population, U1,U2,p,mortality); (Line 15)
Then the initial value of "nr uninfected" 1s set

nr uninfected := population] (Line 16)

We now initiate the first "infected person"-process, and since
‘we are to repeat this statement we mark it with a lavels

% ; infect: activate new 1nfectéd person; (Line 17)

i
4

ThL% statement generates a new "infected person'"-process by the
"generative" expression | '

new infected person

and activates this process immediately, By "immedlately" we
mean that the main program suspends lts own actions to allow
the just generated "infected person"-procesé to execute 1its
first active phase, described in Lines 5-8, This is called
ndirect scheduling" (see CHAPTER L). |

When this process suspends itself (Line 8), the mailn program
immediately resumes its actions in a new actlve phase,

This active phase consists of only one statement, suspending

the actions of the maln program for the tlme Interval between
this and the next appearance of an infected person, The length
of this interval has a negative exponential distribution, and we
may writes

hold(negexp(p, U2)); (Line 18)

-95-

- If there are any more uninfected persons, we repeat the
infection:

- 1f nr uninfected >0 then go to infect;] (Line 19)

If all persons are infected, we proceed to the next statement
- which has to be

hold(11) (Line 20)

since no analysis should be made till the last infected person
has died or become cured. Then we may write out the results:

write(population,cardinal(dead),cardinal{cured)) (Line 21)

'The procedure "cardinal" glves the number of references ("ele-
ments") in a set., This 1s the last statement, the SIMILA
block and the SIMULA description is concluded by

The complete descriptlion becomes:

SIMULA begin (1)
integer population, nr uninfected, U1, U2] (2)
real p; array mortality [L+ :1(3; (3)
set dead, cured; (4)
| activity infected person; (5)
' begin integer day; (6)
nr uninfected := nr uninfected - 1; (7)
hold(3); . ' (8)
for day := 4 step 1 until 10 do (9)
if draw(mortality [ﬁai], U1) then ' (10)
begin include(current,dead); terminate(current) end(11)
else hold(1); (12)
- include(current,cured) (13)
end; (14)
3 read(population, U1, U2, p, mortality); (15)
' nr uninfected := populatlon, ‘ (16)

infect: activate new infected person; (17)

-917-

12.2 Details of the Element and Sequencing Procedures.

In this sectlion we will discuss in detail the sequencing of
events 1n simulations generated by SIMULA system descriptions
by using the example in the last section,

All events which are scheduled, on which we have informatlion,
are represented by an "event notice" in a set, '"the sequencing
set" (8QS).

An event 1s determihed'by'the system time at which the event

is to occur and by the process which is to be active, The event
notice must contaln these two informations: a system time refe-
rence (TR) and a process reference, However, since all refe-
rences to processes in SIMULA are indirect, through elements

the event notice instead of a process referencé contains an
element reference (ER). The element referred to will in turn
:refer to the process, |

Thus the format of an event notlce 1s
(TR,ER) .

vThe event notices in the 8QS will at any time be ordered
according to increasing value of the TR, The event notice
lying in the front of the SQS refers to the currently active
process, the '"current" process. When the current event is
completed, 1ts event notice 1s removed. The event notice which
occupled the second positlion now becomes the first, and the
next active phase of its (indirectly) assoclated process be-
comes the new "current event",

Since the maln program ls the only process exilsting initialiy
and 1t is bound to have an active phase, the initial contents
of the SQS 1s an event notice reférring an element which in
turn refers the main program, Let us name the element E(MP).
The system time is in SIMULA set equal to zero at the start of

-98.-

system operation, The contents of the SQS then is
(0, E(MP))

This event causes the 3 first statements of the main program
to be executed (Lines 15-17).

In Line 17, the expression'"new infected person" creates a
new process, belonging to the activity "infected person", Let
us name this process P1 1n our discussion,

The reactivation point (RP) 1is placed behind the declarations
of attributes. This implles that P! when activated will
start 1ts first active phase by executing the first statement -
of its operation rule, (See CHAPTER 2). During the active
phase the RP is not defined, When it 1s completed, the RP 1is
placed behind the statement concluding the active phase, thus
defining the action whereby a new active vhase of this process
shall start,

Together with P1 anAelement referring to Pl 1s generated, Let
us name this element E(P1).

As described in CHAPTER 3, an element contains 3 references,
One reference specifies a process, the two others serve to
specify a set membership, if any. ©Since the SIMULA sets are
ordered and cyclical, these two references specify a successor
and a predecessor in the set, The format of an element then
is

(successor, predecessor, process)
The element of the main program contarns
(none, none, mailn program),

and the element of P1 contains

(none, none, P1)

-99-

In this discussion, the SQS will be ordered as follows:

SQS
E1

E1 ls the current event, at the front of SQS. E2 is the next
event to E1 etc.

The expression "new infected person" is preceded by the word
activate, This implies that P1 shall have 1ts filrst active pnase
at the current system time and with priority before all other

events, even the current one. ("Direct scheduling": "activate E"
ts equivalent to "activate E delay O prior". GSoe CHAPTER U4).

To achieve thls the current event is not cancelled, it only
suspends 1ltself by placing the event notice generated by
"gctivate new infected person" in front of 1itself,

"activate new infected person" then generates an event notice

(0, E(P1)),
and the contents of the SQS becomes

SQS:
(0, E(P1)),
(0, E(MP)).

The consequence is, according to the rules stated, that the first
active phase of P! becomes the current event, and P1 executes

the first statements of its operation rule (Lines 7-8).

("new infected person" already has had the effect of generating

the process and its attribute "integer day").

-100-

hold(3) in Line 8 concludes the first active phase of P1, and
at the same time schedules a next active phase for itself to
occur 3 time units later, it "suspends" itself.

("hold(3)" is equivalent to "reactivate current delay 3")

This scheduling is done by generation of an event notice ;
(0 + 3, E(P1), which is inserted at its proper place in the]
- 8QS. ’81hce the SQS is ordered according to increasing TR, the %
SQS becomes

SQS:
(0, E(MP)),
(3, E(P1)).

The event notice (0, E(P1)) has disappeared because 1its
assoclated event is completed.

 The main prégram once more becomes the current process, and

' the system time still is zero, The only action in this event

'{s "hold(negexp(p,U2))" (Line 18), The main program suspends
itself, Let us assume that the random drawing "negexp(p,U2)"
"gives 2,5 as its result, The hold-statement then passivates

the main program and generates the event notice (0 + 2.5, E(MP)).
We get

- SQS3s
(2.5, E(MP))
(3 , E(P1)),

Once moré the main program becomes active, The system time is
stepped forward to the TR of the current event, 2.5, and the |
statement of Line 19 1s executed. We assumed that the size of
the population is large, and we will then execute Line 17 once
more: the main program creates a new event notice referring

to a new element E(P2) which refers to the new process P2
(generated by the executlion of "new infected person"), and sus-

pends itself,

~101-

The SQS becomes

SQSs

i ‘ (2.5, E(P2))
i : -~ (2.5, E(MP))
(3 , E(p1))

P2 executes Lines 7-8 of its operation rule (which it shares
with P1 and all other "infected person'"-processes to be gene-
rated) and generates the event notece (2.5 + 3, E(P2)) which
gives the new contents of the S5QS:

(2.5, E(MP))
(3 , E(P1))
(5.5, E(P2))

The main program now executes the hold-statement Let us
assume that the result of the random drawing 1s 2, which gives

SQS:

(3 , E(P1))
(4.5, E(MP))
(5.5, E(P2))

P1 now gets its second active phase, The reactivation point
of P1 indicates that the for-statement of Line 9 now shall be
started: "day" is put equal to 4 and the random drawingadf
, Line 10 is executed., Let us assume that the outcome is "false".
! Then "hold(1)" is executed and the SQS becomes

i L, E(P1))
‘ (4.5, E(MP))
(5.5, E(P2))

P1 gets its 3rd active phase : "day"is increased by | to 5
and once more a random drawing is performed, Let us assume
that the outcome this time 1is "true". Then the statement
"include(current, dead)" shall be executed, '"current" now is
P1, or rather E(P1), and the set membership of the element
must be modified:

E(P1) shall be included as the last element of the set "dead".
This set has til now been empty: 1t has only contained its
"get head", which has been its own successor and

-102-

predecessor:

head(dead): (head(dead), head(dead), "no process")
(as always the process reference of a set head is to "no process")

E(P1) shall become the last element of "dead":
head(dead) shall become its successor element, »Since there are
as yet no other elements, the elements of "dead" after the inclusion

are

head(dead) : (E(P1),E(P1), "no process")
E(P1) : (head(dead) ,head(dead), P1)

The statement "terminate(current)" ends the active phase of
P1 without léaving a reactivation point or an event notice,
P1 is terminated, it only exist in the system as an element of ;
~the set "dead" and a carrier of the variable "day", having the

J
value 5,

We have §
SQS: | |

(4.5, E(MP))

(5.5, E(P2)) ;

‘The main program generates P3, E(P3) and the directly sche-
duled event notice (4.5, E(P3)):

SQS s

(4.5, E(P3))
(4.5, E(MP))
(5.5, E(P2))

The first active phase of P3 gives

SQ8 | - | | ;
(4.5, E(MP)) |
(7.5, E(P3))

-103-

Let us assume that Lhe random drawing in Line 17 gives 1.5 as
result:

SQS:
(5.5, E(p2))
(6 , E(MP))

(7.5, E(P3))

Now P2 enters its 2nd active phase at the for-statement at
system time equal to 5.5. Let us assume that the random
drawing already at day=4 gives true as outcome. Then E(P2)
shall be inserted as the last element of "dead". This implies
that it gets head(dead) as its successor and E(P1) as its
predecessor, The references of the other elements are modified
accordingly, and the set becomes:

head(dead) : (E(P1), E(P2), "no process")
E(P1) : (E(P2), head(dead), P1)
E(P2) : (head(dead), E(P1), P2)

Then P2 is terminated and only exist in the system as an element
of "dead" and a carrier of the information "day=h4",

In this way, the sequencing is continued. Before we leave
the example, let us consider some other situations,

Let us assume that

SQS:

(15, E(MP))
(16 , E(Pn))
(17.8, E(Pn+1))

L]
o
L d

and that the main program executes its hold-statement giving
the event notice (16, E(MP)). According to the definition of
the hold-statement, the generated event notice has no priority,
Therefore it is inserted gfter all other event notices with

TR = 16 already in the SQS, which becomes

104-

SQS:e

(16 , E(Pn))
(16 , E(MP))
(17.8, E(Pn+1))

If we in Line 18 instead had written
reactivate current delay negexp(p,U2)prior

the event notice would have had priority over other event
notices with the same TR:

SQS ¢

(16, E(MP))
(16, E(Pn))
(17.8, E(Pn+1))

 ””Notice that We have to write "reactivate" in this case: the
" main program is already active and therefore "actlvate" will
have no effect, '

"reactivate E ~---" removes the existing event notice, if any,
and substitutes the new one generated by the statement,

Let us consider the situation when an "infected person'"-process,
Pn, has survived the 10th day., He execcutes the final hold(1)-
statement, and in his next active phase the statement "include.
(current, cured)" is executed, This inclusion follows the

same rules as described for the "dead" set above, No terminate-
statement 1is specified, but the process is automatically termi-
nated since no other statement follows the include-statement,
The local "sequence control" of the process' actions has "left
through the final end" of the operation rule,

When all members of the population are infected, the statement
hold(11) (Line 20) of the main program is executed, The re-
sulting event notice will have a larger TR than any other EN

already generated or to be generated in the system operation,

-105-

This implies that this event notic2 will become and remain the
last one in the SQS. - When it finally i1s the only one not exe-
cuted, the main program executes 1ts last active phase, Line 21,
and the main program becomes terminated, control leaves through
its final end. |

Now the 8QS 1s empty, and no more actions will occur in the
system. If the SIMULA description 1s an inner block in an
ALGOL program, control will proceed to the next statement in
the outer block. All entities declared and generated within
the SIMULA block will disappear, However, variables declared
in the outer block may have been operated upon within the

' SIMULA block, which may in this way transmit information to
the outer block.

12.3 Details of Scanning and Connection, .

As staﬁed~above, the "infected person"-processes will end up

as terminated members of the sets "dead" or '"cured"., For

those who are elements of '"dead", the integer attribute '"day"
will specify at which day after infection the person died,

This we may want to use to establish a histogram of the days

of death. Let "nr dead [4 : 10]" be an integer array, declared
in the SIMULA block head.

We may perform the calculations inside the operation rule of
the "infected person" activity, but we will now show how we
may use the connection facilitlies of SIMULA for this purpose
(see CHAPTER 5).

All the "dead" processes are members of the "dead" set, Each
of these processes carry the relevant information in the
attribute "day", If we want to compute the statlstics during
the last active phase of the main program, the use of the
identifier "day" has no meaning: "day" is not declared in the
SIMULA block head, and we have as many values of "day" as we

have processes in the system,

-106-

In order to get all these values available, one at a time,
we must be able to refer to each individual procéss, and make
its attribute available to be operated upon.

If E is an element referring to a process P belonging to the
activity A, and S is a statement, the statement

inspect E when A do Sj

will "connect" the process P so that its attributes are
avallable in the statement S, There is no ambiguity now,
since we have specified an individual process through the ele-
ment E, and it is the individual values of the attributes of
this process P we get access to.

To use this device, we also must be able to let E refer to

all members of the set "dead" in succession, we must "scan"

the set, This is done by using an "element variable", a
variable taking on specific elements as values, Let us call
this variable "pointer" and declare it in the SIMULA block head

by
element pointer;

We start the scanning by letting "pointer" refer to the element
head (dead):

pointer: = head(dead);

The scanning is achieved by repeated substitution of "pointer"
by its own successor:

pointer: = suc(pointer)

After the first substitution "pointer" will have the "first"
element of "dead" as its value, after the second substitution .

‘the second element etc,

=107~

Since the SIMULA sets are cyclic, such a sequence of substitu-
tlons would never stop. Therefore we have after each substi-
tution to test whether the element now referred to by "pointer"
1tself refers to a process., For this purpose we use the
Boolean procedure "exist", exist(pointer) will have the value
true if pointer refers to a process through its element value,
false 1f its element Valﬁe has no process reference. ‘

Since only the head of a set has no process reference, we
may continue the substitution as long as exlst(pointer) has
the value true.

After each substitution we connect the process referred to and
use its "day" attribute for calculations.

The lay'out of the SIMULA program becomes :

element pointery and integer array nr dead [; : 1@];

are declared in the SIMULA block head,

After the statement hold(11) (Line 20) we give all variables
in nr dead zero as initial value (k is an integer variable also
declared in the SIMULA blogk head)

for k: = 4 step 1 until 10 do nr dead [k]: = 0}
Then pointer is given its initial value '

pointer : = head(dead);
and the scanning, connection and calculation is done by

for pointer := suc(pointer)while exist (pointer)do
inspect pointer when infected person do
nr dead [Ziay:]: = nr dead @ay]+ 13

(The last statement simply increases by 1 the number of dead
for the day of death of the person connected),

-108 -

As last statement we may specify a printout:
write (population, nr dead, cardinal(cured));

which will print all components of the array.

The "inspect"-statement will not affect the set membership
of the elements referred to. Another connection statement

extract E when A do S
will connect the process referred to by E, but at the same time
- remove E from the set to which it belongs, if any.

The "extract" statement may also be used in our case, since
it is irrelevant whether the set membership is kept or not,.
However, the substitution procedure must be a different one,
since suc(pointer) is none after "pointer" has been extracted
from the set "dead".

When "pointer" has been extracted and the necessary calcu-
lations made, we want to get the next process which now, after
the previous extraction, is the first element of the set., In
this case we may omit the statement "pointer = head(dead)";
and instead write

for pointer: = first(dead) while exist(pointer)dg
extract pointer when infected person dg
nr dead [day]: = nr dead [day] + 1;

Notice that the element extracted looses its only reference in

the system, through the set '"dead", by the extraction., On the
other hand it gets another reference added through the connec-
tion. After the connection statement 1is completed this refe-
rence vanishes. No other reference is created in the connection
statement, it is not possible to refer to the element any more:
it disappears from the system., Since this element is the only
one referring its process, the process also disappears,

S5 i 1«

B+ B e s e R

-110-

batch of units of a given order waiting in the queue, the next
vrder is tried., The last units of an order are accepted as a
batch, even if the number is less than the ordinary batch size.
If a machine finds no acceptable batch in the product queue, it
wlll wait until more units arrive,

Although the individual pieces of product are "units", a unit
will not be treated as an individual item in the present modél.
For a given order and a given step in its schedule, 1i.e.
machine group, we define an gpart (order part) record to
represent the group of units currently involved in that step.
The units are either in processing ‘or waiting to be processed

. the corresponding machine group.

An order 1s represented by a collection of opart records. The
sum of units in each opart is equal to the number of units in
the order. Each opart is a member of a product queue., If a
machine group occurs more than once in the schedule of a product
.. pe, there may be more than one opart of the same order in the
product queue of that machine group.

Among the attributes of an opart record are the following
integers:; The order number, ono, the product type, the step,
the number of units waiting, pw, and the number of units in
processing, np. The flow of units in the system is effected by
uuunting up and down the‘attributes nw and np of opart records.

An opart record is generated at the time when the first batch
of units of an order arrive at a machine group. It is entered
at the end of the corresponding product queue, The opart will
remain member of this'queue till the last unit has entered:
processing, It will droptout of the system when the last unit
has finished processing. A Boolean attribute last iS‘needéd

to specify whether a given opart contains the last units of the
order involved in this step.

At a given time the units of an order may be distributed_on
several machine groups. There will be an opart record for each

