- 68"

CHAPTER 10,

THE UNIVAC 1107 SIMULA.

10.1 The Language.

The UNIVAC 1107 SIMULA 1s, excepting a few restrictions,
implemented as an extension of the UNIVAC 1107 ALGOL, In
particular the input/output and backing store facilities of
the latter are available., For information concerning these
topics the reader 1s referred to the "Programmers Guide" for
the UNIVAC 1107 ALGOL, This document also provides the
transliteration rules from the ALGOL 60 reference language
and other necessary inflormation.

The SIMULA basic symbols (see section 9.1) are lmplemented

as reserved identifiers not usable for other purposes within

a SIMULA block. The SIMULA library procedures for random
drawing and data analysis (CH,'s 7, 8) are consldered declared
in a block outside the program, whereas *the other . SIMULA
procedures are treated as 1f declared ln a dummy block ilmmedi-
ately outside the SIMULA block. All procedure identifiers

ar@ therefore, by suitable redeclaration, usable for any

purpose that the programmer may choose,
As in the UNIVAC 1107 ALGOL torward references to variables
and other items (except local labels) must be resolved by

corresponding "LOCAL"™ declarations in the relevant block heads,

10.2 Restrictions.

At the time of writing the following concepts are not implemented:

a, The own concept,
b, the call by value of a string parameter, and
e, OSTRING ARRAY in the sense of UNIVAC 1107 ALGOL,

-69-

Additional restrictions ares

1. A connection block may only refer to an aétivity already
declared, or to the present one. (Forward references to
activities by process designators aré, however, resolved
by a "LOCAL ACTIVITY" declaration in the SIMULA block head.)

2. Termination, passivation, or suspension of the currently
active process is not in general tolerated during the
evaluation of an expression, i,e, inside a function
procedure, This is the case if the expression is part of

a, an actual parameter,
b, a subscript bound of an array declaration, or
¢, an element of a switch,

Suspension as the result of the direct scheduling of
another event 1s permitted inside a function procedure,

~1f the calling process 1s not terminated, cancelled, or
reactivated before control returns,

10.3 Storage Requirement.

The data storage economy of UNIVAC 1107 SIMULA programs is far
from the optimum, This is partly due to the way in which
certain basic access mechanisms are implemented in the UNIVAC
1107 ALGOL system,

In order to achleve maximum storage economy the folloﬁing
rules should be observed within activities corresponding to a
large number of processes,

1. Inactive periods within sub-blocks and procedures should
be avoided, ' ' '

2. The amount of data local to the outermost block, and the
number of non-local variables referenced in that block,
should be minimized,

-70-

3. The number of for statements and calls for activities and
user defined procedures should be kept a minimum,

See also the next sectilon.

10.4 Data De-Allocation,

The mechanism for de-allocating data at run time is fully f
automatic, However,'an understanding of the princliples

involved will enable the programmer to have better control

over the storage requirements of his program, if economy is

required,

. The main rules are the following.

1, The data structure local to a block, except the outermost
block of a process, will remain only as long as the "local i
sequence control (i.,e, the main control or the reactivation
‘point of the process in question) 1is within the block.,
The data may include simple variables,‘value‘parameters,
and names on arrays and sets,

2. A process (including data local to a sub-block) remains
only as long as there is at least one element referencing
1t, '

3, An element remains only as long as there 1s at least one
reference to it, from

a, an element variable or value parameter, or a component

of an element array,
b, an element (through set membership),
¢, an event notice in the SQS, or
d, a connection block,

-71-

4. An array remains only as long as it has a name, The
name can be the declared array identifier or an
exogenous array attribute of a process,

5. The elements of a set retain their set membership only
as long as the set has a name, The name can be a simple
declared set designator, a value get parameter, or a
component of a get array., (The name need not be effec-
tively referenceable, see below,)

6. An event notice can be removed from the SQS as the result
of a sequencing statement, or¢ when the (local) sequence
control leaves an active process,

The rules 2-5 are put to effect by malntaining reference counts
on processes and elements, A set head has a separate

reference count for set designators referencing the set,

There are, however, two cases where the reference count
technique 18 not suffictent.

1. The value of an glement expression, as residing in an
accumulator immediately after the evaluation, is not
reflected in the reference count on the element. An
exception from rule 3 has to be made to prevent the de-
allocation of the eglement value at exit from an element
procedure, 1f the reference count indicates no reterence
to this element., (This 1s the case e.,g., with all
generative expressions,) Normally the element gets a
reference assigned to it as the result of the statement
containing the expression, but if this does not happen,
and there 1s no other reference to it, the system does not
get another chance to perform the de-allocation.

-79-

2. When certain "cyclie" data configurations are present, it
may happen that an element with a non-zero reference count
is not and can never become effectively referenceable
through a computable element expression, Such an element
can safely be de-allocated, even though it is not '"out of
the system" in the reference count sense,

As a simple example consider a process referencing itself
through a local element variable X. Assume that there is
no other reference to the element and no other element
referencing the process, Evidently the only way of effect-
ively referring to the element is to evaluate the expression
X during an active phase of the process or in a connection
~block connecting it, But the process 1s passive or termin-
‘ated, and not connected, because otherwise there would have
been another reference to it, via the same or another ele-
ment, from an event notice in the SQS or from a connection
block, contrary to assumptions.

For these reasons a second de-allocation mechanism, the
"storage clean-up" 1s brought to use whenever the available
store 1s exhausted. The storage clean-up will locate all
ffectively referenceable parts of the system and wake the re-
maining store available for use, 1f any,

Warning,

Since the storage clean-up may be brought in at unpredictable
points of time, it should have no visible effect in the program,
In particular every effectively referenceable element will
retain its set membership, It follows that a set which can

not be broken up by the reference count technique, e.g. a

et local to a process referencing itself, will remailn in the
system as long as it contains at least one effectively refe-
renceable element, even if it 1s not itself effectively refe-

renceable as a set,

73 -

10.5 Operating Instructions

The UNIVAC 1107 SIMULA implementation consists of two distinct
parts.

‘1. The compiler translates a SIMULA source language program
to a program in object code. The compiler is a permanent
extension of the UNIVAC 1107 ALGOL compiler,

2. The run time system is the collection of subroutines that
may be referenced by a SIMULA object program, The run
time system includes all SIMULA library procedures,

In the following a certain elementary acquaintance with the

" EXEC 11 monitor system is assumed. The reader is referred
to the "UNIVAC 1107 EXEC II Manual" for details. The des-
cription is valid for an operating system where the SIMULA
compiler resides on drum and the SIMULA library subroutines
are on a tape called "SIMLIB"., The appropriate operating

' procedure for the particular computing center should always
be obtained before compilation and execution of a SIMULA
program is attempted. o

A SIM control card brings in the ALGOL compiler with the SIMULA
extensions. The word "SIMULA" has been added to the compiler's
list of reserved identifiers, so that SIMULA blocks can be re-
cognized. Also the names of the random drawing and data ana-
lysis procedures of SIMULA have been added to the list of
standard procedure identifiers of ALGOL, Within a SIMULA

block all SIMULA concepts become available,

All options valid for an ALG control card are available and -
retain their usual meaning.

The SIMULA run time system resides on a mégnetic tape., It
must be part of the user's program complex file (PCF) on
drum at the time of allocation of the absolute object program,

10.6

- 74 -

Some of the SIMULA routines wili replace corresponding
routines in the ALGOL run time system, which is a permanent : ,
part of the monitor library on drum,

Any ALGOL object program, subject to the restrictions
mentioned in section 10.2, may be run with the SIMULA run |
time system, The execution will be slightly slower, but the ‘
avallable data store is increased, since the SIMULA storage
allocation routines can utilize both memory banks.

The card deck of a simulation run could have the following
typical layout: '

V RUN =--m

V ASF F = SIMLIB

V N XQT CUR | '
TRI F “

V SIM PROG

(Source language program)

-V XQT PROG '
(Data cards)
V FIN

"PROG" can be any name chosen for the program, "SIMLIB" is
the operational label adopted for the magnetic tape containing
the SIMULA run time system, The CUR operations serve to
include the latter in the user's PCF,

Initiai values

Upon entry into a block variables (simple or subscripted) de-
clared local to the block have the following initial values:
zero, false, none, and blanks for arithmetic, Boolean, element,

and string variables, respectively. Sets are empty.

