CHAPTER 1,

- SIMULATION AND DISCRETE EVENT SYSTEMS,

1.1 The SIMULA Project.

- The two main objects of the SIMULA language are :

1. to provide a language for a precise and standardized
deseription of a wide class of phenomena, belonging to what
we may call "discrete event systems",

2, to provide a programming language forvan easy generation of
similation programs for "discrete event systems".

TSIMULA is based on ALGOL and contains that language as a sub-

set, The extension consists of the introduction of some new

basic concepts, new statements which operate upon these concepts
and a set of library procedures. In order to achieve the greatest
possible logical integration of SIMULA and ALGOL, the scope of
some of the ALGOL statements has been extended to operate also
upon the new concepts introduced,

SIMULA has been developed by the authors at the Norwegian
Computing Center, since the summer of 1963 under a contract with
UNIVAC Division of Sperry Rand Corporation, A SIMULA compiler
for the UNIVAC 1107 and 1108 Computers is completed and has been
in operation since December 1964,

In addition to the authors Bjorn Myhrhaug at the NCC, Bernard
Hausner (now at RAND Corporation) and Ken Walter (now at Case
Institute of Technology) have taken part in various stages of

the project,

lhe authors also want to express thelr gratitude to all the
programmers and operational research workers who have taken .
interest in the project and contributed useful ideas and ' |

comments.

1.2 Simulation.

Before the appearance of the electronic computer, properties
of telephone communication systems, ticket counter systems,
machine systems, etc. were mainly analyzed by analytic means.

™n mathematics the theory of stochastic processes furnished
the basic tools for work in these areas. Important and
interesting results were, and still are obtained by this
.approach.

“ The technologlcal development and the introduction of sclentific
“sethods for planning and decision making has created a need
"for study of complex systems. The usefulness of the analytical
. approach 1s, however, limited to rather simple situations.

The electronic computer has made simulation an extremely power-
ful method of analysis, and the use of simulation has been
extended to many other areas than those mentioned above by new
disciplines like operational research, By simulation it is
~ossible to study very complex problems, and both transient

ahd statlonary states of systems may be analyzed whereas the
analytical approach often is limited to stationary states.

This does, not imply that analytical studies have become obsolete.
If a solution is obtalneble from a realistic analytical model,

1t offers more complete and reliable information than the
statistical Inference from a simulated sample of system runs.

Since 1t 1s possible to simulate very complex situations, 1t is
tempting to substitute a "too reallistic" simulation for clear
hinking and valid simplification, This is done by the intro-
duction of so many variables and varlations 1in decision

rules that the basic structure of the problem 1s obscured and
no certain information on the important features of the system
is obtained. ' |

Also, one is tempted to forget that in many situations (e.g. in
military operational gaming) the number of avallable combinations
" of strategles is so large that only a very small pefcentage

may be simulated.

The programming of a simulation may be very time-consuming.

This 1s not too serious if a large number of alternatives are to
be run and the model of the actual system and the decision

rules to be used are well defined.

This is as a rule not the case, On the contrary, one wants to
experiment with different layouts and decision rules, trying to
understand the system, gradually introducing more complexity in
those parts of the system where this is essential. Very often
1t is found that apparently minor changes 1in the system call
for extensive reprogramming, and the usefulness of the approach
is greatly reduced.

The advent of the algorithmic languages 1like ALGOL and‘FORTRAN
has only slightly improved the situation. These

languages are basically operating on fixed data structures and
have simpler principles for sequencing of actions than needed
in simulation.

General simulation programs have been developed. Some are

rather ad hoc tools for faster generation of programs, other
try to create simulation languages. The best known languages
are GSP by Tocher and his colleagues, CSL by Buxton and Laski
and SIMSCRIPT by Markowltz, Hausner and Karr. The authors

" have galned from their aquaintance with these efforts.

s e s

SIMPAC by Lackner was not available to the authors, GPSS by |)
Gordon 1s so different from SIMULA in its approach that it :
has not had much influence on the latter,

The last, but perhaps the most important restriction in the

use of simulation is the lack of a basic language for problem
formulation, Programming cannot be started before the system

is precisely described, There 1s a strong demand for basic
concepts useful in understanding and describing all systems
studied by simulation from a common point of view, for standard-
ized notation, for easy communication between research workers
in different disciplines,

SIMULA 1is an attempt to meet this demand, Problem formulation
and not program generation has been our starting point., This
being sald, it 1s clear that the language should be designed
so that system descriptions may produce simulation programs
through a compiler,

1.3 SIMULA Design Objectives,

1, Since simulation is the method of analysis most commonly
to be used for the systems in which we are interested,
SIMULA is a dynamic language:

It 1s deslgned to describe sequences of actions, not
permanent relationships. The range of variation in decision
rules and interactions between components of systems 1s so
wide that it is necessary to let the language contain a
general algorithmic language, An important reason why

ALGOL has been chosen is that its block structure 1is similar
to what was needed in SIMULA,

2, SIMULA should be built around a few basic concepts, selected
to provide the research worker with a standardized approach
to a very wide class of problems and to make it easy to

identify the various components of the system,

3., Attempts have been made to make the language unifying - pointing
out similarities and differences between systems, and
directing - forcing the research worker to consider all
relevant aspects of the systems. Efforts have also been
made to make SIMULA descriptions easy to read and print
and hence a useful tool for communication,

4, Taking the above objectives into account, SIMULA descriptions
(supplemented by the necessary input, output and data ana-
lysls statements) should without any rewriting be able to
produce simulation programs for elctronic computers through
~compilers,

1.4 Discrete Event Systems,

iin'bur discussion of language concepts we will start with a
‘well-known system:

Ah office with a series of ticket counters, offering a range

" of services to customers, Customers arrive in the system with
time intervals described by an arrival distribution, they enter
a queue and they are given service by a clerk behind a counter
after some time in the queue., Then the customer disappears from
the system or enters another queue.

The customers are moving through the system, the clerks remain.‘
The queues also remain but their contents change.

One may regard the clerks as the active partners in the inter-
action taking place, pushing the passive customers from place
to place, | ' ‘

The same point of view also 1s a natural one when studying a
‘stream of materials through a factory, The materials are passive,
the machines are active, ‘ o

R 3 it L_Are,.."i h i s.’v,.%(I”r?f et

o b
‘3!,“ gitvs”"‘i ¢, He AGe sthainhis

ha Bewn, Wegslua

“he customers (or the materials) may all be exactly similar,

but often they must be characterized by priorities, by a _
description of the service they demand, their earlier history
in the system ete, ‘They are carriers of information,

This distinction between passive entities being carriers of
information and active entities acting upon and pushing the
" passive ones around is so natural in many systems commonly ' ' {
studied that some simulation languages have introduced
passive data carriers and active "machines", "statlons" or
"routines" as two basic concepts, This was also done in
the early stages of SIMULA, | |

In social systems like epidemics, attitude diffusion etec.,

we encounter entities ("individuals") interacting with other
entities of the same kind and at the same time acted upon by
other entities (e.g. "treatments"), | | - f

hen we extend the counter system or the factory, it may be
natural to regard the entities passive in one part of the
system, as active in another part or in another situation,
Alsa, it 18 always possible to reverse the point of view
and describe the customers and the materials as the active
partners, acquiring service from the passive clerks or
machines only characterized by data describing thelr operatio-
al properties, o

For these reasons, and to achieve greater flexibility and
unity, SIMULA has integrated the two kinds of entities into
one, The basic concept in SIMULA is the process, being
characterized by a data structure and an gperation rule,

The individual items of the data structure of a process will
be called attributes.

A process may be active in some stages of its presence in the
system, passive in others, depending upon its operation rule
and interference with other processes.' It 1s possible to let
the operationArule of a process be rudimentary and in this
way obtain an always passive data carrier as described above,

During an active phase of a process it may "connect" other
processes, making their attributes available to itself for
decision-making and manipulation, During an active phase a
process also may "schedule" a later actlve phase for itself
and other processes,

An active phase of a process 1s called an "event"., The sche-
duling of an event 1s made by an "event notice" telling at
which "system time" the event will occur and to which process
it refers,

In SIMULA the system time is kept constant during an event,
and hence all actions during an active phase may be regarded
as lnstantaneous.,

Thus SIMULA may be used to describe systems which satisfy the
following requirement:

The system is such that it 1is possible to regard its operation
as consisting of a sequence of instantaneous events, each

event being an active phase of a process,

The number of processes may be constant or variable and they
all belong to one or more classes called activities,

Since the set of system times at which events occur forms a '
discrete point set on the system time axis, and since every]
action 1in the syétem 1s a part of an event, we will name these
systems discrete event systems,

By introducing suitable processes SIMULA also may be used to ' |
describe with the desired degree of accuracy continuously
changing systems, as well as systems in which some processes
have continuous changes, other prodesses discrete changes,

In addition to processes we need entities which may be used
‘as "storing places" for processes: queues, files etc, The
SIMULA "set" concept serves this purpose, The contents of a
SIMULA set may consist of any mix of different kinds of pro-
cesses and may be changed during the operation of the system. [

We also want to be able to assign names to specific processes -
and to refer to processes through their event notices,

Because of the need for uniformity in the logical structure

and the implementation on a computer, all references to pro-
cesses in SIMULA are indirect, through a standardized refereace
called an "element",

To obtain a suitable system description, we may often need

more than one element referring to the same process: The

clerk at an airport check-in counter has to check if the passenger
he 1s glving service also is referred to in the 1list of

booked-in passengers, We may even want to have more references

to the same process in a given set: In the police criminal
records a person may be present under different aliases,

The naming of specific processes in SIMULA 1s achieved
through "element variables" taking on specific elements as
values. '

Having introduced processes, event notices, sets, elements
and element variables as basic concepts, we need statements
utilizing and operating upon these concepts to be able to

glve a precise description of the data structures and operation
rules of processes., Part II of this report glves precise
definitions of the basic concepts and available statements in
SIMULA,

