AT,
“ %

T

- quantity array loc [l:nloc] ;

INTRODUCTION - COMPILER

»Th@ follow1ng documentation outlines some of the main -

features of a compiler for the SIMULA Common Base.
The compiler has been planned according to the design
principles of the Gier Algol cdmpiler (see P, Naur et
al: various papers in Nordisk Tidsskrift for Infbxma-
sjonsbehandling, BIT). ' '

This documentation is mainly concerned with the imple-

mentation of the non-Algol features of the SIMULA
language.

The compiler is described in terms of four passes, The
functions of the last pass may alternatively be effected

.thrbugh scatter read fix~ups at load time, or through

indirect addressing at run time.

On smaller computers it may be convenient to split'up\
the third and main pass into more than one.

Formal descriptions of compile time data and associated
algorlthms are given in SIMULA with thq following

features added t+o the Common Base:

) S . o

d

A generalized type declafatién is introduced, similar

" to the class declaration.

@

g

A declared type is itself a type declarator. Iﬁ.this'
document, that has been 1nd1cafed by using the type
identifier underllned

type quantity ; begin’;:... end ;.

ref (quantity) X ;3 x := loc[i] ;

.o

x will now point intdlthé'middle of the array loc.’

.

Descriptions of partially compiled source language
text are éiven in Backus Normal Form (BNF).

. A2 NI R G2 U w3 G e S e W e D e

The main functions of this pass are:

- lexicographic analysis
- syntactic analysis
- transformation of source
program to an intermediate language

A possiblé hash algorithm for identifiers is: add
together consecutive bit sequences of length k of the
binary reﬁresentation of the given character string,

- take the result modulo 2%**k as hash index. Approxi-
mate partial sums can be obtained by wordwise multi-

: plications by a factor 2%#g + 2%#k + 28%2k + ,.....

for a 6-bit character machine k=12 willvgive immediate -

- lookup if all identifiers are 2 characters or less. |

~

A hash table of identifiers and the corresponding
lookup algorithm may be as follows: é?

‘ ref (item) arrél hash [0:2##k~1] ; ,
: ' class item (charstring) ; value charstring ; text charstring ;

\i _begiﬁ>ref (item) next ; ref (quantity) sem ;'integer blev, qualev ;
' end item ; ' . ‘ . L : ' fo

progedure lookﬁp’(s,id,old) ; name id, old

e

text s ; ref (item) id ; Boolean old ;

S

i i
begin integer i°;

io:= hagher (s) ; old := false ; _
if hash [i] == none then ijd :~ hash [i] :- new item (s)

else begin id :~ hash [i] ;

L: ii s = id.charstring then old := true

else ii id.next == none then id :~ id.next :-= nhew item (s)

else begin id :- id.next ; go to L end
end ' '
end lookup ;

integer procedure hasher (s) ; text s ;

begin hash algorithm end hasher ;

I

The ltem attributes sem, blev and qualev are used in
pass 3 to define the semantic contents of an identifier
at any time.

The table is 1n1t1allzed to contain all system defined
procedures and classes, and can be generallzed to
accommodate external symbols and constants as well as
jdentifiers. The internal representation of any such
jtem is an internal code followed by a ref (item) value

(output in reverse order).

In the output of pass 1 blocks of the different kinds

S have the following formats.

1. prefixed block: K
<block prefix> prefbegin <declaration list> declend
<&tatement list> prefend '

2. sub~block: _
begin <declaration list> declend <statement l1ist> blockend

3. .procedure body:

Erdcbggiﬁ'<declaratiqn.lis£>_declend7<statement list> procen

- -

If the external procedure body is an unlabelled block,

AT

the <declaration list> and <statement list> are those
of the external body. Otherwise the declaration list
is empty and the statement list is the external body.

4. class body:

classbegin <declaration list> declend <statement list> classend

where <declaration list> and <statement list> are defined

as for a procedure body.

5, connection block:

connbegin blockbegin declend <statement> blockend connend

ATEN

where statement is the external connection block.
(The sub=block is ignored in pass 3 if its LQL is
empty, see the following sections.)

The program text is scanned backwards. The main.purpose
of pass 2 is to assemble a list of all quantities local
to a block in the head of the block, for each block in
the program except class bodies. The list includes - all
local labels and information about the attributes of

o

local :and the formal parameters of local procedures.

In the output of pass 2 a prefixed block has the
following format: ‘ o

pref <block prefix> prefbegin <local quantity list>
~declbegin <reduced declaration list> declend <statement list>

Erefend

and a sub-block has the format:

‘blockbegin <local quantity list> declbegin <reduced
" declaration list> declend <statement list> blockénd:\ .

AN,

)

Y)

v

A <reduced declaration list> is a sequence of reduced
§

declarations, possibly empty: 3 ~

<reduced declaration> ::= <array declaration>]|<switch declaration>

. s :
<reduced procedure declaration>|<reduced class declaration>

<reduced procedure declaration> ::= procedure <proc.id.> prochegi
<local quantity list> declbegin <reduced declaration list>
declend <statement list> procend '

P
I

<reduced class declaration> ::= class <class id.> classbegin

<reduced declaration list>»declend <statemen£ list> classend

A <local quantity list>, LQL, is defined as a collection
of records containing a main record of class brec. '
Furthermore any record referenced from a record in an
LQOL belongs itself to the LQL. No record will belong

to more than one LQL.

class brec (pref,nvirt,npar,nloc); ref (item) piéf; integer

nvirt,npar,nloc; begin quant array loc [linloc]; end brec;

class quant; begin ref (item) ident,qualid; integer type,
kind,cateqg,dim; Boolean last; ref (brec) descr; end quant;

The attributes have the following meanings
pref: ' Prefix identifier of a class declaration,_"

nvift: The number of virtual quantities (of the main
~part of a class decl.). ‘

npar: The number of parametets and virtual guantities.

.

nloc: The total number of local quantities,

loc: A vector of guant records, one for each local - e
' quantity in the order virtual quantlties,

parameters, declared quantities, V-

ident: The declared or specified identifier.

qualid: The qualifying class 1dent1fier of a quantity
of type ref.

type: Notype, real, integer, boolean, text, label,
' ref, character.

kind: N _Simple, array, proc, class. e :
S ~ 51y, PO ’
©oVubsblios T g elred o msgs oy g - . ' w
Cron f Sy { N ~ | N,

cateqg: Declared v1rtual ‘value parameter, name
' a parameter, parameter by reference,

dimﬁ /' The number of dimensions of an array.:
| | L
last: True for a declared quantity which is the last
one of a type declaration or an array segment.

descr: Reference to a brec record describing the
attributes of a class and the formal parameters
of a declared procedure. '

Notice that the quant attribute descr excludes the
attrlbutes last and dim. ‘ ' '

Switches can be treated as quantities of kind proc and
type label.

LQLs can be built up by means 6f two segmented auxiliary
stacks, Q and L. The Q-stack contains eéntries of class
quant. Whenever an identifier is processed as part of

its declaration or speciflcatlon, an appropriate quant
_record is added to the stack. When a new block end of

" any sort or a procedure heading is encountered another;,iff:
Q-stack segment is ‘started. S

I3)

R

...’9._.
The L-stack contains entries of class brec. When a class
deélaration.pr procedure heading is finished, a brec
record is formed and added to the L-stack. Its lec
array is a copy of the last segment of the Q-stack.
Reerranged &s described above (virtuals, parameters,
loeals) thaﬁ.segment is removed and a quant record for
the declared procedure oOr class is added to the Q=-stack.
When any ne& block, except a class body, is encountered
another L-stack segment is started. When the block is
finished, the course of actions is as above, except
that nothing is added to the Q-stack. fThe generaﬁed'
brec record is the main record of the 1,OL of the block.
The LQL itself is the last segment of the L-stack.

That segment is removed and transferred to the output

file.

In the output file, a ref (brec) value is»conveniently
represented by a record ordinal within the LQL. The
records should be output in the natural LIFO order

(last in, first out) .

Then pass 3 will read each record before the one
containing the corresponding descr attribute is read.'
The reference value of the latter can ﬁherefore be found
py direct lookup in a table built up during the input

of the LQL. :

o e i i ek o owm e e e v o o ond S0

pass 3 is the main'compiler pass, which performs the
actual translation into machine instructions. The

output consists of the,following types of information:
1. Machine-instructions (oxr abstract representations).'

2. Control'informatioh for pass 4 to update machine

instructions output_earlier intpas§-3.

- 10 -

3. Prototypes containing block,information'relevent

‘ to the runtime system for the‘administration of
storage, the run time checklng of parameters (when
neceSsary), _the 1nterpretat10n of v1rtual quantities
and the implementation of the subclass concept,

-Pass 3 malntalns the follOW1ng counters relevant to ﬁhe
output' '

1. pc: The program instruction counter,
"2, te: The text item counter.

3. pt: Thefprototype space coordinate{

The hash table of 1dent1f1ers (and constants) generated’
'1n pass l can be 51mp11f1ed by omitting the array hash,
For formal convenience the item class is redefined with

no consequences for the internal representation of item
records. C

; class item (charstring,sem, blev,qualev, next) H
! text charstring ; ref (quantlty)_sem ; integer blewv, qualev ;

4
ref (item) next 1Y

Initially all records are cleared (they are assumed to
occupy a known continuous atea). Then a'system block
‘prefix is entered, whose LQL (see below) describes all
'System defined procedures and classes. The item attri-
butes next will in the follow1ng be used to represent

a redeclaratlon stack of item records for each 1denti~
3 ‘fier. The item record referenced by the internal

:g ' representatlon of an identifier will at any time displayA,
“the curreht semantic contents of the identlfier"‘ Lit
2 U S PR N 4

PR -

. O ¢ PPTOE B P R

. H . T PO Y [N R
e iesiined e i AR

ﬂ‘r Copoi @ PR aad s sohainhy) .

‘_' HER Y LI B - i . . - .

2 Q- 5tach segment is started.

oo

Mo
f

- 1] -

The following quantities describe the blocks enclosing
the current point of compilation:

ref (brecord) array display [0:maxblev];
Boolean array refable, conl[0: maxblev];

integer bl ; . \

Where maxblev is the maximum block level, and bl is the
current block level. display [(i] , £+ =1,, maxblev
is a reference to the record describing the enclosing
block at level i, refable [i] is true if the block is

or connects a referenceable object and con [i] is true
for a connectlon block. For a preflxed block, a sub-
block or a procedure body the entry in display refers

to the main record of the associated LQL.

An LQL in pass 3 is a collection of records of the

classes brecord and gquantity, which are extensxons

and modifications of the classes brec and quant of

pass 2. The collection of LOLs of encglosing blocks

forms a stack. The item records of redeclaration stacks
may easily be incorporated into the same stack, and thec

same is true for the entries in use of the above arrays.

The class guantity has been extended hy the following

attributes:

addr: Run time address, normally the relative addres
' within a data record. For a declared label tt
run time address is an instruction address (pc

For any quantity matdhing a‘virtual specifi~
cation the attribute addr is a relative addres

within a prototype.b For a label or procedure
- whose declaration has not been processed,'addl

is used to contaln the text coordinate tc of

“fthe last complled forward reference, whlch

points to the next one a.s. 0.

- 12 -

!
1

def: l_ "Relevant for a declared label or procedure.

- It has the value true if the declaration has
been processed. As long as def is false addr
may contain the text coordinate (tc) at which
the quantlty was last referenced. '

qual: A reference to the brecord describing the class
e ~which qualifies a quantity'of type ref. The':
attribute qual and qualid may occupy the
- same storage position.

encl: - ‘A reference to the enclosing brecord.

dispqg: Procedure to dlsplay thlS quantlty into the .
" hash table. T ;

‘undispq: Procedure to remove this quantity from the
hash table. | Ceine | i

setqual: Procedure for assigning values to the attributes

gqual and qualev.

class quantity ; v
begin ref ref (item) ident,qualid; ref (brecord) descr,encl,qual;
lnteger typeikind,categ,dim,addr; Boolean last,def,locqual;

procedure dispg (bl); integer bl;
inspect ident when item do
h begin if sem =/= none then
begin if blev = bl then
begin if encl == sem.encl then = ©
‘ error (“redeclaration"); -
w end; :

next :- new item (""

| (Sem,blev,qualev,next);
gnd; o |
~ sem :~ this qu.antity;-,blevV:V= bl;
if type = ref.then qualev := if lecqual then
bl else qual deq ident. blev, |

'end dlqu,

pERr

i

- 13 =~ - , ' .

procedure undispq;
inspect ident when item do
if next =/= none then

begin sem :- next.sem;

blev := next.blev;
next :- next.next;‘.,
end else
begin sem :~ 3953;‘
blev := 0;

end undispqg;

procedure setquel (bl); integer bl;
inspect qualid do 3 : ‘ ,
begin if sem == none then error ("unknown qualifiex®);

if sem.kind # class then
v ‘error ("qualifier not clags");
qual :- sem.descr; ,
locqual := blev = bl;

end setqual; i

end quantity;.

The class brecord has the follow4ing attributes in
addition to those of the class brec:
deq: A reference to the- quantlty record representing
| the declaration of a class block or a procedure
block. ' '

prec: A reference to record describing the prefix
class of a class block or a prefixed block,

~or the one descrlblng the formal parameters'A

of a procedure. The attributes pref and prec

may occupy the same storage location.

virtrec: A reference to a record descrlblng the virtual
- -3,quant1ties at thls or any 1ower prefix level.._

B _ - 14 =

pad: Runtime prototype address (relative). e . o £
reclg: Length of runtime data record.fA)
plev: Prefix level,

decbeg: instruction address of the first array
declaration of this block head or, if none,

equal to statbegq.

statbeg: Instruction address of the first statement,
“or if none, equal to finbeg.

finbeg: instruction address of the first statement IR e:wb
' following the symbol inner or, if none, the

instruction address of the final end. '

' : . .
contclass: True for a block containing local class

declaratiOns.

seen: Set to true when allocatlon has started (see

allocate). \
'.\
t , ,
taken: = Set to true when prefix information has been

_ collected-duringvalLocation (see allocate).

S

virtuals: The attrlbutes of a v1rtuals record have
the follow1ng meanlng. '

totvirtt - The number of virtual quantities
(accumulated) . '

actq: Each component is a reference to the
Jquantlty recoxd which represents the ‘
%matchlng quantlty, if any. T Q ' .

actad: The run time addrese of the matchlng
L 'quantlty, except for a procedure.

allccate: Procedure for defining the values of the

dispc:

undispc:
incl:

dispi:

uﬁdispl:

- 15 ~-

-

following brecord attributes:

bﬁter,prec,virtrec (and all attributes of the
virtuals record),\pad,reclg,plev,contclass,
and the guantity attributes addr,qual and
qualev of the relevant components of the
array loc. The quantity attribute categ is
set to virtual for a quantity matching a V
virtual one. The hash table mechanism is
used to discover quantities matching virtual

specifications and to define the attributes

prec and qual. The procedure is recursive,

its net result is to allocate its own record,
those of the prefix sequence not already
allocated, and those of local classes.

Proceduré_to display the local class identi-

fiers into the hash table, ingluding those

local to the prefix sequence..

Procedure to remove all local classes from

“the hash table.

procedure to determine whether a given class
‘ { . ,

is included in this one.

procedure to display all local gquantities in
the hash table, including those local to the

prefix sequence. ~ |

Procedure to remove all local quantities from
the hash table.:

B _ - 16 -

class brecord(pref,nvirt,npar,nloc);
ref (item)pref; integer nvirt,npar, nloc,
begin ref (brecord)prec; ref (virtuals)virtrec; ref (quantity)deq;
integer pad,reclg,plev,decbeg,statbeg,finbeg;
Boolean contclass,taken,seen; quantity array loc[l:nloc];

class virtuals (totvirt); integer totvirt;
begin ref (quantity)array actgll:totvirt];
integer array actad[l:totvirt]l;

end virtuals;

procedure allocate(bl); integer bl; -
begin integer i,k,r,v; '

L. i

seen := truej
comment establish prefix sequence;
if pref==none then begin vi=plev:=0; r:=rechead;contclass:=

S : I false end

ff else inspect pref do

v . if sem==none then error ("unknown prefix")

else if sem.kindsclass then error ("prefix not class")
else if blev#bl then error ("class declarations- at
different block levels")
else begin prec :- sem. descr; '
if nét prec.seen then prec. allocate (bl)

else if not prec.taken then error ("prefix loop");

: _ ' v := prec.virtrec.totvirt; r := prec.recly;
V contclaas. =prec,contclass; plev:=prec.plev+l
\i R end prefix sequence and initial conditions established;
¢ taken:#gsgg; virtrec:-new virtuals(vinvirt);
| N pad:=pt; pt-épt+prohead+v+nvirt;
if deg=/=none and deq. kind=proc then pt:=pt+prec.npar;
Comment the prototype of a procedure should contain the
parameter descriptors although they belong at compile |
time to a prefix brecord; ‘ : ' -
gr i:=nvirt+l step 1 untll nloc do inspect loc i do

———

a . if kind#prOC-and kind#class and type#label then

 begin addf:ar;_;:ér+l; if type=text then ri=r+l; . =

- 17 -J

comment a text descrlptor is assumed two words long,
1f(k1nd~array or type= =ref or type= =text) and last then
. ' pti=pt+l
end evaluétion 6f attribute addresses and prototype length;
reolg =r; dispc(bl); . ' |
- comment all local classes must be in display when allocating
each of them and in order to check the qualifications
of virtual refs; L '
inspect virtrec do | ‘ |
begin for i:=1 gggE 1 until v do
begin actgqli]:~prec. virtrec.actqlil;
\ actad[i]:=prec.virtrec. actadlil; actqlil.dispq(bl)
imf’ . end take over and dlsplay of old v1rtuals,
: o for i:=v+l step 1 until totvirt do lnsgect locli-vldo

begin actqglil:- this quantlty,actad[ll-”addr-=i def: true,'
1f ident.blev=bl then error ("conflicting virtual '
specification");
if type=ref then setqual (bl); dispg(bl)
end lnltlallsatlon and display of new virtuals;

————

for i:=nvirt+l step 1 until nloc do lnsgect-loc[i]gg

begin if type=ref then setqual (bl);
if kind=class then ‘
begin descr.deqg:-this quantity; contclass'=trué;
if not descr. taken then descr allocate(bl+l)
v o | end class case; ' B
if kind=proc then 1nspect descr do

_Eﬂiﬂ seen--taken.*true, .
for k:=1 step 1 until npar do insE__m locikldo
begin addr:=k~- 1+rechead if type=ref then ‘then setqual
(k+l), end,
~end proc case, there is no separate prototype
' for a proc heading;
if ident.blev= bl and ident.sem. categ~v1rtual then
begin if kind#ident.sem. kind or (type#ident.sem.typ
~and 1dent semtypefuniversal)then error ("no match
else if type= =ref and ident.sem. type—ref and
- e o'not ident.sem. qual incl(qual) then error '
0 A L IR ~ ("mot subordlnate")

- 18 -

k°~1dent sem. addr, if k>v then actqlkl, ident:

-

| none;
actglk]l:= this quantity;actadlk]:= addr;
addr:=k; categ:=vittual; def:=true; |
end virtual case ‘
end scanning of locals;“.

—na——

for i:=1 step 1 until totvirt do actqlil.undispq

end binding of virtuals;
undispc

end allocate;

o m—

Erocedure dispé(bl); integer bl;
begin integer i;

if prec =/=none then prec. dlspc(bl)

for i:= npar+l step 1 until nloc do inspect loclildo
if kind = class then dispq(bl) end dispc; o

procedure undispc;
if contclass then begln integer i;

for i := npar+l step 1 until nloc do inspect loc[m]do
if kind = class then undispq; ‘
if prec =/= none then prec.undispc end undispc;

Boolean procedure incl(x); ref (brecofd) X3

if x.plev < plev then incl := false else

L: if x.plev = plev then incl := X = this brecord else
begin X i= X.precj gg to L; end incl;

Qrocedure displ(bl); 1nteger bl;

begin integer i;

if prec =/= none then prec dlspl(blp,
for i := 1 step 1 until nloc do locEL] dlqu(bl)end displ;

-procedure undispl; begin integer 1i;

for i := nloc step -1 until 1 do loc[il.undispqg;

if prec =/= none then prec.undispl end undispl;
_"eﬁd brecord;. ‘

(.
igd

- 19 - | |

The following procedure is used whenever a block head is
encountered. |

ocedure enter (x,r,c); ref (brecord) x; Boolean r,cC;

procecur=
begin bl := bl+l; displaylbl] :~ x; refable[bl] 1= I

to this procedure.

conl[bl] := c; x.displlbl] end enter;.

The course of actions on entering a block head depends on
the type of block. It is assumed that the LQL of a
prefixed block, or a procedure body has been read in and

established as a list structure.

ref (brecord) mr,cr; ref (item) ci,pi;

ref (quantity) pr;
Prefixed block:

mr.pref :~ ci; mr.allocate (bl+1);

enter(mr,false,false)

Where‘“mr“ is a reference to the main record of the LQL,

and "coi" is the class identifier of the block prefix.

Sub~block:

_igymr.nloc # 0 then

beéin mr.allocate (bl+l)- enter (mr false, false)end
Procedure:

pr'—pl sem;mr.deq:-pr;mr.prec:-pr. .descr;pr. def: —true,

if pr. addr#0 then fixup(pr.addr,pt); pr. descr. pad--pt,

mr.allocate(bl+l); enter(mr false false)

- error{"noe
Where "pi® is the procedure ldentlfler,'and "fixup"
P

"~ outputs control information for pass 4.to insert ;he

correct prototype address lnto all forward references

Class:

L
AR

enter (ci.sem.descr,true,false)

Where "ci" is the class identifier.

Connection block:

enter {(cr,true,true)

Where "cr" is a reference to the record describing the

“class associated with the connection block. For a

connection block 1, ¢r = ci.sem.descr, where "ci" is .

the class identifier of the connection clause. For a - iﬁ

connection block é, "cr” is the. qualification of the

‘preceding reference expression.

- The following procedure describes the course of actions

upon completion of any block, except that a blockend

~is ignored if con(bl) is true.

BTN L

procedure léave; begin if not con(bl) then outprotj

display'(bl}.undispl;.diSplay (bl) :- none; bl := bl-1 end leave;v

ey

The assignment of none to display(bl) implies that the'
LOL stack can be reduced by one level if refable(bl) is P

false. - - , =

- The procedure "outprot" constructs and outputs the

prototype of the completed block. The procedure .is
not described formally, since many details of a
prototype will be machine dependent. '

A prototype should contain at least the follcwing
information: (The compile time equivalent is

indicatea for each item.)

10.

11.

12,

13.

4.

15.

procedure (prec.locli] (type,kind,categ,qual,addr),

- 21 -

The prototype length (possibly defined implicitly

by a terminal item).

-

A reference to the prototype of the'prefix class,
if any (prec.pad).

The type of a procedure (deq.type), and qualificatioﬂ
(dec.qual) if type is ref.

\
i

R AV

The block'levei (bl).

The.détairecord length (reclg).

Prgf}rgd block bit (prec =/= none and deq == none).
Object bit (refable[bl]).

Local classes bit (contclass),.

The number of virtual quantities (virtrec.tctvirt),

The number of parameters of a procedure (prec.npar).

The instruction address of the first array declaratlon
(decbeg)

The instruction address of the first statement (statbeg){

The runtime address of the matching quantity for each

virtual quantity (normally virtrec.actadl[il; for a

procedure virtrec.actql[il].descr.pad, i=1,2,,..,virtrec.totvirt)

A complete description of each formal parameter of a

i=1,2,...,prec.npar).

N

. For each fypé”ré‘ declaration or array segment or text .

quantity, the type, klnd, the number of declared
quantities, and the relatlve record address of the

first one are given.

The same information is given for each ref or array

parameter

to a class.

(In this case the actualvpara-

meter correspondence can always be checked at compile

time, and the parameter values can be stored in a

generated object by the calling sequence itself),

Entries of this type are generated by the following

algorithm

begin integer i,n; n = 1;

16.

for i := nvirt+l step 1 until nloc do

inspect refto loclildo

if last then begin

if kind = simple and’

(type = ref or type = text)
or kind = array then

B entrylS(type kind,n. (if categyvirtual then addr

where “entry‘ls“zoutputs an entry of type 15 in the

requiréd format.

else virtrec. actadl[addr])=-n+l);

It is assumed that the quantity

attribute "last" is true for any procedure, class,

switch or label and for each formal parameter.

The prefix level

(plev)

The following information may be useful as part of a

prototype,
"finbeg",
block,

but- - is not essential:

the brecofd attribute

‘the identifier of a class or procedure
-a line number coordinate in the source text.

The first piece of information is required by the

runtime system described in the second part of this

documentation.

The prototype address

(relative to the beginning of

the runtime prbtotype area)'ia defined at allocation

tlme) oee

"allocate

~ The address (pad) should be’v

-_1ncluded in the output text as- information to. pass 4

since the prototypes are output in an order different

from that of the allocation.

L
RN

L

