Expressions

Syntax

£

<lapel> ::= <identifier>
<expression> ::= <value expression> |
<text value>|
<reference expression>|
<designational expression>
<value expression> ::= <arithmetic expr=ssion>
<Boolean expression>|
<character expression>
<reference expression> ::= <object expression>

<text expression>
Semantics

The syntax for label represents a restriction compared
with ALGCL 60.

A value expressicn is a rule for obtaining a value.

A reference expression is a rule for obtaining a

reference and the associated referenced value,

A designational expression is a rule for obtaining

a reference to a program point.

Any value expression or refsrence expressior has

an associated type, which is textually defined. The
type of an arithmetic expression is that of its value.
The following deviations from ALGOL 60 are introduced;

see also section 8.2.3.

1) An expression of the form

<factor>+t<primary>

is of type real.



- 32 -

2) A conditional arithmetic expression is of type
integer if both alternatives are of type integer,
otherwise its type is £§§l-f If necessary, a
conversion of the value of the selected alternative

is invoked.

Character expressions

Szntax

<simple character expression> ::= '<character designation>'
<variable> |
<function designator> |
(<character expression>)
<character expression>
::= <simple character expression>|
<if clause><simple character expression>

else <character expression>
Semantics

A character expression is of type character. It

is a rule for obtaining a character value.

A character designation is either an external
character or another implementation defined represen-

tation of an internal character.

Object expressions

Syntax

simple object expression ::= none|

) <variable>|
<function designator> |
<object generator> |
<local object>|
<qualified object>|

(<object expression>)



_33_

<object expression> ::= <simple object expression>
<if clause><gimple object expression>
else <object expression>
<object generator> ::= new <class ‘identifier>
<actual parameter part>
<local object> ::= this <class identifier>
<qualified object> ::= <simple object expression>

qua <class identifier>
4.3.2 Semantics
An object expression is of type ref (<qualification>).
It is a rule for obtaining a reference to an object.

The value of the expression is the referenced object

or none.

4.3.2.1 Qualification

The qualification of an object expression is defined

by the following rules:

1) The expression none is qualified by a fictitious

class which is inner to all declared classes.

2) A variable or function designator is qualified
as stated in the declaration (or specification,
see below) of the variable or array or procedure

in question.

3) An object generator, local object, or
qualified object is qualified by the class of
the identifier following the symbol "new", "this",

or "qua" respectively.

4) A conditional object expression is qualified by
the innermost class which includes the qualifications
of both alternatives. If there is no such class,

the expression is illegal.



4.3.2.2

...34_.

5) Any formal parameter of object reference type is
qualified according to its specification regard-
less of the qualification of the corresponding

actual parameter.

6) The qualification of a function des&gnator whose
procedure identifier is that of & virtual gquantity,
depends on the access level (see section 7). The
qualification is that of the matching declaration,
if any, occurring at the innermost prefix level equal
or outer to the access level, or if no s.uch match

exists, it is that of the virtual specification.

Object generators

An object generator invokes the generation and
execution of an object hkelonging to the identified
class. The object is a new instance of the corre-
sponding (concatenated) class body. The evaluation
of an object generator consists of the following

actions:

1) The object is generated and the actual parameters,
if any, of the okject generator are evaluated.
The parameter values and/or references are trans-
mitted. (For parameter transnission modes,

see section 8).

2) Control enters the object through its initial
begin, whereby it becomes operating in the "attached"
state (see section %). The evaluation of the

object generator is completed:

case a: whernever the basic procedure "detach"”
is executed "on behalf of" the generated

object (see section 9.1), or

case p: uponlexit through the final end of the

object.



e

The value of an object generator is the object
generated as the result of its evaluation. The
state of the object after the evaluation is either

"detached" (case a) or "terminated" (case b).

4.3.2.3 Local okjects

A local object "this C" is a meaningful expression

within

1) the class body of C or that of any subclass of C,

or

2) a connection block whose block qualification is

C or a subclass of C (see section 7.2).

The value of a local objéct in a given context is

the object which is, or is connected by, the smallest
textually enclosing block instance, in which the local
object is a meaningful expression. If there is no such
Llock the local object is iilegal (in the given context).
For an instance of procedure or class hody "textually

enclosing" means containing its declaration.

\ g . . L3
~ 4.3.2.4 Instantaneous gqualification

Let X represent any simple reference expression,
and let C and D be class identifiers such that D
is the qualification of X. The qualified ob3ject
"X qua C" is then a legal object expression,
provided that C is outer to or equal to D or is a
subclass of D. Otherwise, i.e. if C and D belong
to disjoint prefix sequences, the qualified object

is illegal.



- 36

If the value of X is none or is an object kelonging
to a class outer to C, the evaluation of X qua C
constitutes a run time error. Otherwise, the value
of X ggé C is that of X. The use of instantaneous
qualification enables one to restrict or extend the
range of attributes of a concatenated class object
accessible through inspection or remote accessing.

(See also section 7.)

Text expressions

Syntax

..
..

<simple text expression> = notextl

<variable> |

<function designator>

<text expression>
<text expression>::= <simple text expression>

<if clause><simple text expression>
else <text expression>

<text value> ::= <text expression>j

<string>

Semantics

" The constituents of a string are external characters

and/or other implementation defined representations of

internal characters.

A string is a text value, not a text reference. It
is not a text expression, but it may occur as the right
part of a text value assignment (cf. section 10.6), as
an operand of a text value relation (cf. section 5.2),
and as an actual parameter called by value (cf. section
8.2.1).

In an implementation the left and right string quotes

may be represented by one and the same external character.

In this document either symbol is represented by the

symbol ",



_37_.
notext designates an empty text reference.

For further information on the text concept, see

section 10.



