Class declarations

Syntax

&

“

<declaration> ::= <ALGOL declaration>]
<class declaration> |
<external declaration>

<class identifier> ::= <identifier>

<prefix> ::= <empty>
<class identifier>
<virtual part> ::= <empty> |
virtual: <specification part>
<class body> ::= <statement> | |
<split body>

<initial operations> ::= begin|

<blockhead>; |

<initial operations><statement>;

<final operations> ::= end|

; <compound tail>
<split body> ::= <initial operations>
inner <final operations>
<class declaration> ::= <prefix><main part>
<main part> ::= class <class identifier>
<formal parameter part>;
<value part><specification part>

<virtual part><class body>
Semantics

A class declaration serves to define the class associated
with a class identifier. The class consists of "objects"

each of which is a dynamic instance of the class body.

An object is generated as the result of evaluating an
object generator, which is the analogy of the "call"

of a function designator, see section 4.3.2.2.

- .16 -

A class body always écts like a block. If it takes
the form of a statement which is not an unlabelled
block, the class body is identified with a block of
the form ; :

begin; S end

when S is the textual body. A split body acts as a
block in which the symbol "inner" represents a dummy
statement.

For a given object the formal parameters, the
quantities épecified in the virtual part, and the
quantities declared local to the class body are called
~the "attributes" of the object. A declaration or
specification of an attribute is called an "“attribute
definition".

Specification (in the specification part) is necessary
for each formal parameter. The parameters are treated
as variables local to the class body. They are
initialized according to the rules of parameter trans-
mission, (see section 8.2). Call by name is not avail-
able for parameters of class declarations. The follow-
ing EEFCEE}§£§M§£§MQQQBPtedLW_

<type>, array, and <type> array.

Attributes defined in the virtual part are called
"virtual quantities"™. They do not occur in the formal
parameter list. The virtual gquantities have some
properties which resemble formal parameters called by
name. However, for a given object the environment of
the corresponding "actual parameters" is the object
itself, rather than that of the generating call. See
section 2.2.3.

- 17 -

Identifier conflicts between formal parameters and
other attributes defined in a class declaration are

illegal.

The declaration of an array attribute may in a con-
stituent subscript bound expression make reference

to the formal parameters of the class declaration.

Example:

The following class declaration expresses the notion

of "n-point Gauss integration” as an apggregated concept.

class Gauss (n); integer n;

begin array W,X[1:n];

real procedure integral(F,a,b); real procedure F;

real a,h;

begin real sum, range; integer i;

range := (b-a) %X0.5;

for i := 1 step 1 until n do

sum := sum + Fla+rangex (X[il+1))xW[il;
integral := range x sum;

end integral;
comment compute the values of the elements of

L W and X as functions of n;

The optimum weights W and abcissae X can be computed
as functions of n. By making the algorithm part of
the class body, the evaluation and assignment of these
values can be performed at th: time of object generation.
Several "Gauss" objects with different values of n may
co-exist. Each object has a local procedure "integral”
| for the evaluation of the corresponding n-point formula.

see also examples of section 6.1.2.2 and section 7.1.2.

Subclasses

A class declaration with the prefix "C" and the

class identifier "D" defines a shbclass D of the

class C. An object belonging to the subclass consists

of a "prefix part", which is itself an object of the

class C, and a "main part" described by the main part

of the class declaration. The two parts are "concatenated"
to form one compound object. The class C may itself have

a prefix.

Let Cl’ C2, e veney Cn be classes such that Cl has no

prefix and Cp has the prefix C, (k = 2, 3, «c.. , n).
Then Cl’
of ¢. (k =2, 3, «eee., n). The subscript k of Ck

k
(k =1, 2, «...., n) is called the "prefix level" of

Cor veenen ¢ Cyq is called the "prefix sequence"

the class. C; is said to "include" Cj if i < 3, and C;
is called a "subclass" of Cj if i > 3 (i, 3 =1, 2, ..,
n). The prefix level of a class D is said to be "inner"
to that of a class C if D is a subclass of C, and

"outer" to that of ¢ if C is a subclass of D. The
figure 2.1 depicts a class hierarchy consisting of five
classes, A, B, C, D and E:

class
A class

B class

B class

o U 0w P

A class

A capital letter denotes a class. The corresponding
lower case letter represents the attributes of the

main part of an object belonging to that class. In

an implementation of the language, the object structures
shown in Fig. 2.2 may indicate the allocation in memory
of the values of those attributes which are simple

variables.

Fig. 2.2

/B\ |
C D
Fig. 2.1
a a a a a
b b b e
c d

20

The following restrictions must be observed in the use

of prefixes:
1) A class must not occur in its own prefix sequence.

2) A class can be used as prefix only at the block
level at which it is declared. A system class is
considered to be declared in the smallest block
enclosing its first textual occurrence. An
implementation may restrict the number of different
block levels at which such prefixes may be used.

See sections 11, 14 and 15.

Concatenation

Let Cn be a class with the prefix sequence Cl’ C2,
vesseey Cn—l and let X be an object belonging to Cn.

14
Informally, the concatenation mechanism has the following

consequences.

1) X has a set of attributes which is the union of
those defined in Cl' C2, ceeeey Cn' An attribute
defined in Ck (1<k<n) is said to be defined at
prefix level k.

2) X has an "operation rule" consisting of statements
from the bodies of these classes in a prescribed
order. A statement from Ck is said to belong to

prefix level k of X.

3) A statement at prefix level k of X has access to
all attributes of X defined at prefix levels equal
to or outer to‘k, but not directly to attributes
"hidden" by conflicting definitions at levels <k.
These "hidden"attributes may be accessed through
use of procedures or this).

- 21 -

4) A statement at prefix level k of X has no immediate
access to attributes of X defined at prefix levels
inner to k, except through virtual quantities.

(See section 2.2.3.)

5) In a split body at prefix level k, the symbol
"inner" represents those statements in the operation
rule of X which belong to prefix levels inner to
k, or a dummy statement if k = n. If none of C

...... r Cho1
operation rule of X are ordered according to

ll
has a split body the statements in

ascending prefix levels.

A compound object could be described formally by a
"concatenated" class declaration. The process of
concatenation is considered to take place prior to
program execution. In order to give a precise description

of that process, we need the following definition.

An occurrence of an identifier which is part of a given
block is said to be "uncommitted occurrence in that
block", except if it is the attribute identifier of a
remote identifier (see section 7.1), or is part of an
inner block in which it is given a local significance.
In this context a "block" may be a class declaration
not including its prefix and class identifier, or a
procedure declaration not including its procedure
identifier. (Notice that an uncommitted identifier
occurrence in a block may well have a local significance
in that block.)

The class declarations of a given class hierarchy are
processed in an order of ascending prefix levels. A

class declaration with a non-empty prefix is replaced
by a concatenated class declaration obtained by first

modifying the given one in two steps.

.—22_

If the prefix refers to a concatenated class
declaration, in which identifier substitutions

have been carried out, then the same substitutions
are effected for uncommitted'ideﬁtifier occurrences

within the main part.

I1f now identifiers of attributes defined within the
main part have uncommitted occurrences within the
prefix class, then all uncomnmitted occurrences
within the main part of these identifiers are
systematically changed to avoid name conflicts.
Identifiers corresponding to virtual quantities

defined in the prefix class are not changed.

4

The concatenated class declaration is defined in terms

of the given declaration, modified as above, and the

concatenated declaration of the prefix class.

1.

Its formal parameter list consists of that of

the prefix class followed by that of the main part.

Its value part, specification part, and virtual

part are the unions (in an informal but obvious
sense) of those of the prefix class and those of

the main part. If the resulting virtual part
contains more than one occurrence of some identifier,
the virtual part of the given class declaration is

illegal.

Its class body is obtained from that of the main
part in the following way, assuming the body of
the prefix class is a split body. The begin of
the block head is replaced by a copy of the block
head of the prefix body, a copy of the initial
operations of the prefix body is inserted after

the block head of the main part and the end of the

N A—

_23..

compound tail of the main part is replaced Ly a copy
of the compound tail of the prefix body. If the
prgfix class body is not a split body, it is
interpreted as if the symbols ";inner" were

inserted in front of the end of its compound tail.

If in the resulting class body two matching declara-
tions for a virtual quantity are given (see section
2.2.3), the one copied from the prefix class body

is deleted.

The declaration of a label is its occurrence as

the label of a statement.

Examples:

class point (x,yl); real x,y;
begin ref (point) procedure plus (P); ref (peoint) P;
plus :- new point (x+P.x, y+P.yJ;

end point;

An obiject of the class point is a representation of a

J
point in a cartesian plane. Its attributes are x,y and
plus, where plus represents the operation of vector

addition.

point class polar;

begin real r,v;

ref (polar) procedure plus (P); ref (point) F;

plus :- new polar (x+P.x, y+P.y]);

il

r:= sqrt (x42+y+2]);
vi= arctg (x,y]);

end polar;

An object of the class polar is a "point” object with
the additional attributes r,v and a redefined plus
operation. The values of r and v are computed and
assigned at the time of object generation. ("arctg”

is a suitable non-local proc~dure.)

Virtual guantities

Virtual quantities serve a double purpose:
l) to give access at one prefix level of an object
to attributes declared at inner prefix levels,

and

2) to permit attribute redeclarations at one prefix

level valid at outer prefix levels.

The following specifiers are accepted in a virtual
part:

label, switch, procedure and <type> procedure.

A virtual quantity of an object is either "unmatched"

or is identified with a "matching" attribute, which is
an attribute whose identifier coincides with that of the
virtual quantity, declared at the prefix level of the
virtual quantity or at an inner one. The matéhing
attribute must be of the same kind as the virtual
quantity. At a given prefix level, the type of the
matching quantity must coincide with or be subordinate
to (see Section 3.2.5) that of the virtual specification
and that of any matching quantity declared at any outer
prefix level.

It is a consequence of the concatenation mechanism that
a virtual quantity of a given object can have at most
one métching attribute. If matching declarations have
been givén at more than one prefix level of the class
hierarchy, then the one is valid which is given at the
innermost prefix level outer or equal to that of the
main part of the object. The match is valid at all
prefix levels of the object equal or inner to that of

the virtual specification.

e M L T S R s A P

PR

Example:

The following class expresses a.notion of "hashing”,
in which the "hash" algorithm itself is a "replaceable

part”. "error" is a suitable non-local procedure.

class hashing (n); integer n;

virtual: integer procedure hash;

begin integer procedure hash (T); value T; text T;

begin integer 1i;

’V) o _ . é begin i {=.ifrqgkfff.getchar);
; g ’ go_to L
| T hesh = 1 - Gtk 0
E end hash;
% text array table [D:n-11]; integer entries;
N integer procedure lookup (T,o0ld); name old;
; value T; Boolean old; text T;
. begin integer i; o sale :: '
f coed o 4i= hash(T);
% if tablelil == notext then
begin tablelil :- T; entries p= (e
entri@5+1;§ehd
| else if table [i] = T then
i else if entries = n then
% error{"hash table

: filled completely”)

! else begin i := i+1;
= 0;
; end;

iookup 1= i

end lookup;

end hashing;

25 a8 AR b T2

- 26 -

hashing class ALGOL hash;

begin integer procedure hash(T);

value T;

text T;

begin integer 1i; character c;

hen

L,g_f_NTmorat

begin c = T.getchar;
' then

if o # '
i
80 £ Ok
end;

hash := i-(i + n x nl;

end hash;

end ALGOL hash;

4 " -
R4 SFFS CRRi

rank(c);

