- 111 -

System classes

Two additional system-defined classes are available:

class SIMSET; e eeo}
and
SIMSET g}ass SIMULATION; e e eae}

The class SIMSET introduces list processing
facilities corresponding to the "set" concept
of SIMULA I [2]. The class SIMULATION further
defines facilities analogous to the "process"

concept and sequencing facilities of SIMULA 1.

The two classes are available for prefixing or
block prefixing at any block level of a program.
Such a prefixlor block prefix will act as if an
appropriate declaration of the system class were
part of the block head of the smallest block
enclosing the first textual occurrence of the
class. An implementation may restrict the number
of block levels at which such prefixes or block

prefixes may occur in any one program.

In the following definitions, identifiers in
capital letters, except "SIMSET" and "SIMULATION",
represent quantities not accessible to the user,
A series of dots is used to indicate that the

actual coding is found in another section.

14.1

14.1.1

14.1.1.1

14.1.1.2

- 112 -

The class "SIMSET"

The class "SIMSET" contains facilities for the

manipulation of circular two-way lists, called

"sets",

General stru.ture

Definition

class SIMSET;

begin class linkage;;

linkage class head ;;
linkage class link; e

end SIMSET;
Semantics

The reference variables and procedures necessary for

set handling are introduced in standard classes declared
within the class "SIMSET". Using these classes as
prefixes, their relevant data and other properties are

made parts of the objects themselves.

Both sets and objects which may acquire set membership
have references to a successor and a predecessor.
Consequently they are made subclasses of the "linkage"

class.

The sets are represented by objects belonging to a
subclass "head" of "linkage". Objects which may be set
members belong to subclasses of "link" which is itself

another subclass of "linkage".

14.1.2

14.1.2.1

14.1.2.2

- 113 -

The class "linkage"

Definition

class linkage;

begin ref (linkage) SUC, PRED;

ref (link) procedure suc;
suc :- if SUC in link then SuUC

else none;

ref (link) procedure pred;
pred :- if PRED in link then PRED
else none;

end linkage;
Semantics

The class "linkage" is the common denominator for

"set heads" and "set members".

"SUC" is a reference to the successor of this
linkage object in the set, "PRED" is a reference

to the predecessor.

The value of "SUC" and "PRED" may be obtained
through the procedures "suc" and "pred". These
procedures will give the value "none" if the
designated object is not a "set" member, i.e. of

class "link" or a subclass of "link".

The attributes "SUC" and "PRED" may only be modi-
fied through the use of procedures defined within
"link" and "head". This protects the user against

certain kinds of programming errors.

- 114 -

14.1.3 The class "link"

14.1.3.1 Definition

linkage class link;
begin procedure out;

if sSuC =/= none then

begin SUC.PRED :- PRED;
PRED.SUC :- SUC;
SUC :- PRED :-~ none
end out;

procedure follow(X); ref (linkage)X;
begin out;
if X =/= none then
begin if X.SUC =/= none then
begin PRED :- X;
sUC :- X.SUC;
SUC.PRED :- X.SUC :=-

this linkage

end follow;

procedure precede(X); ref (linkage)X;
begin out;
if X =/= none then
begin if X.SUC =/= none then
begin SUC :- X;
PRED :- X.PRED;
PRED.SUC :~ X.PRED :-

this linkage

end

end precede;

14.1.3.2

- 115 -
Rrocedure into(S); ref (head)s;
Precede (3);

end linkﬁ

Semantics

Objects belonging to subclasses of the class "link"
may acquire set membership. An object may only

be a member of onhe set at a given instant.

In addition to the pProcedures "suc" ang "pred",
there are four Procedures associated with each
"link" object: "out™", "follow", "precede" and

"into",

The procedure "out" will remove the object from
the set 4r any) of which it is a4 member. The
procedure call will have no effect if the object

has no set membership.

The procedures "follow" and "precede" will remove
the object from the set (if any) of which it is a
member and insert it in a set at a given position.
The set and the position are indicated by a para-
meter which is inner to "linkage". The procedure

call will have the same effect as "out™" (except

parameter) if the parameter ig "ggggh or if it has

no set membership and is not a set head. Otherwise

the object will pe inserted imnmediately after ("follow")
or before ("precede") the "linkage" object designated

by the parameter.

- 116 -

The procedure "into" will remove the object from the

set (if any) of which it is a member and insert it as

the lasttmember of the set designated by the parameter.
The procedure call will have the same effect as "out"

if the parameter has the value "none" (except for possible

side effects from evaluation of the actual parameter).

14.1.4 The class "head"

14.1.4.1 Definition

linkage class head;

begin ref (1link) procedure first; first :- suc;
ref (link) procedure last; last :- pred;

Boolean procedure empty;

empty := SUC == this linkage;

integer procedure cardinal;

begin integer I; ref (linkage)X;
X i- ehiswdinkages)07

i Xy

“Xw'sug while X =/= none do
é@éx T o= I+41; %= ¥ Cor mvﬁ§“
@

cardinal := I

end cardinal;

procedure clear;
. . 4 Low goote Ll w do
| begin ref (link)x; Whilll fuest = frnmt ¢le st ol

f\JL i f.LL. e w‘xl_x_;_l_, 5$_//_ IreTTe du .‘..1‘?‘)-3'
end clear;
SUC :- PRED :- this linkage

end head;

£ o s e

- 117 -
14.1.4.2 Semantics

An object of the class "head", or a subclass of
"head" is used to represent a set. "head" objects
may not acquire set membership. Thus, a unique

"head" is d: fined for‘each set.

The procedure "first" may be used to obtain a
reference to the first member of the set, while
the procedure "last" may be used to obtain a

reference to the last metber.

The Boolean procedure "empty" will give the value

true only if the set has no members.

The integer procedure "cardinal" may be used to

count the number of members in a set.

The procedure "clear" may be used to remove all

members from the set.
The references "SUC" and "PRED" will initially
point to the "head" itself, which thereby

represents an empty set.

14.2 The class "SIMULATION"

The system class "SIMULATION" may be considered

an "application package" oriented towards simulation
problems. It has the class "SIMSET" as prefix, and
set-handling facilities are thus immediately

available.

The definition of “SIMULATION" which follows is
only one of many possible schemes of organization
of the class. An implementation may choose any
other scheme which is equivalent from the point of

view of any user's program.

- 118 -

In the following sections the concepts defined in
SIMULATION are éxplained with respect to a prefixed
block, whose prefix part is an instance of the body of
SIMULATION or of a subclass. The prefixed block will
act as the main program of a quasi-parallel system which

may represent a "discrete-event" simulation model.

14.2.1 General structure

14.2.1.1 Definition

SIMSET class SIMULATION;
begin link class EVENT NOTICE (EVTIME, PROC) ;
real EVTIME; ref (process)PROC;
begin ref (EVENT NOTICE) procedure suc;
suc :- if SUC is EVENT NOTICE then SUC

else none;

ref (EVENT NOTICE) procedure pred;
pred :- PRED;

procedure RANK(BEFORE); Boolean BEFORE;
begin ref (EVENT NOTICE)P;

P :- SQS.last;
for. P am=R while P.EVTIME > EVTIME do
P :- P.pred;

if BEFORE then iugeie

wmesl while P.EVTIME EVTIME do

i

P := P.pred%siids;
follow (P) /
end RANK;
end EVENT NOTICE;
link class process;
begin ref (EVENT NOTICE)EVENT; end process;

ref (head) SQS;

- 119 -

ref (EVENT MNOTICE) procedure FIRSTEV;
FIRSTEV :- SQS.first;

ref (process) Procedure current;
current :- FIRSTEV.PROC;

real procedure time; time := FIRSTEV.EVTIMIL;

procedure hold e
procedure passivate fee e
procedure wait ch et
Procedure cancel cv e

Procedure ACTIVATE ceee

-

Procedure accum e
process class MAIN PROGRAM;
ref (MAIN PROGRAM) main;

5QS ;- new head;
main :- new MAIN PROGRAM;
main.EVENT ;- nhew EVENT NOTICE (0,main) ;
main.EVENT.intQ(SQS)
end SIMULATION;

14.2.1.2 semantics

When used as g prefix to a block or a class,
"SIMULATION" introduces simulation—oriented
features through the class "process" and

associated procedures.

The variable "ggg® refers to a "set" which is
called the "sequencing set", and serves to represent
the system time axis. The members of the

Séquencing set are event notices ranked according

14.2.2

14.2.2.1

- 120 -

to increasing values of the attribute "EVTIME". An
event notice refers through its attribute "PROC" to a
"process" object, and represents an event which is

the next active phase of that object, scheduled to

take place at system time EVTIME. There may be at most

one event notice referencing any given process obiject.

The event notice at the "lower" end of the sequencing set
refers to the currently active process object. The
object can be referenced through the procedure "current".
The value of EVTIME for this event notice is identified
as the current value of system time. It may be accessed

through the procedure "time".

The class "process"

Definition

link class process;
begin ref (EVENT NOTICE)EVENT;
Boolean TERMINATED;

Boolean procedure idle; idle := EVENT == none;

Bool:an procedure terminated;
terminated := TERMINATED;

real procedure evtime;
if idle ther ERROR
else evtime := EVENP.EVTIMLE;

ref (process) procedure nextev,

nextev :- if idle then rone elee

if EVENT.suc == none then none

else EVENT.suc.PROC;

14.2.2.2

- 121 -

detach;

inner;

TERMINATED := true;
paséivate;

ERROR

end process;
Semantics

An object of a class prefixed by "process" will

be called a process object., A pProcess object

has the properties of "link" and, in addition, the
capability to be represented in the sequencing

set and to be manipulated by certain fequencing
statements which lnay modify its "process state".

The possible process states are: active, suspended,

Passive and terminated.

When a process object is generated it immediately
becomes detached, its 1SsC positioned in front of
the first statement of its user-defined operation
rule. The process object remains detached through-~

out its dynamic scope.

The procedure "idle" has the value true if the

process object is not currently represented in the
sequencing set. It is said to be in the passive

Oor terminated state depending on the value of the
procedure "terminated". Aan idle process object is
passive if its LSC is at a user defined prefix level.
When the LSC passes through the final end of the
user-defined part of the body, it proceeds to the
final operations at the prefix level of the class
"process", and the value of the procedure "terminated"
becomes true. (Although the process state
"terminated" is not strictly equivalent to the corre-~
sponding basic concept defined in section 9, an imple~

mentation may treat a terminated process object as

14.2.3

14.2.3.1

14.2.3.2

- 122 -

terminated in the Strict sense). A process object
currently represented in the Sequencing set is said to
be "suspended", except if it is represented by the event
notice ét the lower end of the sequencing set. 1In the
latter case it is active. A suspended process is
scheduled to become active at the System time indicated
by the attribute EVTIME of its event notice. This time
value may be accessed through the procedure "evtime",
The procedure "nextev" will reference the process object,
if any, represented by the next event notice in the

sequencing set.

Activation Statements

Szntax

“activator> ::= activate]

reactivate

<activation clause> ::= <activator><object expression>
<simple timing clause> HEES
-2t <arithmetic expression> |
delay <arithmetic expression>
<timing clause> ::= <simple timing clause> |
<simple timing clause> rior
<scheduling clause> ::= <empty> |
<timing clause> |
before <object expression>
after <object expression>
<activation statement> ::= <activation clause>

<scheduling clause>

Semantics
pEalitles

An activation statement is only valid within an object
of a class included in SIMULATION, or within a prefixed

block whose prefix part is such an object.

The effect of an activation statement is defined
as being that of 3 call on the sequencing procedure
"ACTIVATE" local Lo SIMULATION.

Erocedurg ACTIVATE(REAC,X,CODE,T,Y,PRIOR);
value CODE; ref(process)X,Y; Boolean REAC, PRINEK;

text CODE; real "ty

The actual parameter list is determired from the
fornr of the activation slatement,; by the following

rules.

1. The actual parameter corresponding to "REAC"
is true if the activator is reactivate, false
Lrtue == xele, ralse

Otherwise.

2. The actual Parameter corresponding to "x© g
the object expression of the activation

clause.

.

(%]
’

The actual parameter corresponding to "T" jig
the arithmetic expression of the simple timing

clause if bresent, ctherwise it is Zero.

4. The actual parameter corresponding to "PRIOR™

l1s true if pPrior is in the timing clause false

if it is not used or there is no timing clause.

>~ The actual parametor corresponding to "y" jg
the object exXpression of the scheduling

clause if present, otherwise it ig none.

b. The actual parameter corresponding +o "CODE"
is defined from the scheduling clause as

foliows:

- 124" -

scheduling clause actual parameter

empty
at a}ithmetic expression "at"
delay arithmetic‘expression "delay®
before object expression "before"
after object expression "after®

14.2.4 Sequencing procedures

14.2.4.1 Definitions

Erocedure hold(T); real T;
inspect FIRSTEV dc
begin if T > 0 then EVIIME := pvriMp + T;

if suc =/~ none then

begin if suc. EVTIME < BEVITIME then
begin out; RANK (false),
resume (current)
end

end hold;

procedure lassivate;
coreuure

begin inspect current do

] begin EVENT.out; EVENT . none end;
if Q5.empty then ERROR

else resume (current)

end passivaic;

pProcedure wait(s) ; ref (head)s;

begin current.into(S); passivate end wait;

procedure carcel(X); rerf (prcpess)x;
if TT current then passivace else
inspect X do if EVENT =/= none then

begin EVENT .out; EVENT ;- uene end cancel;

- 125 -~

Brocedure ACTIVATE (REAC, X, CODE,T,vY, PRIOR) ; value CODE;
ref (process)x,v; Boolean REAC, PRIOR; text CODE;

real T;

inspect X do if — TERMINATED then
begin ref (process)z; ref (EVENT NOTICE)rv;

if REAC then EV :-~ EVENT

else if EVENT =/= none then go to exit;

Z :- current;

if CODE = " 'irect" then
direct: begin EVENT :- hew EVENT NOTICE (time,X) ;

EVENT.precede(FIRSTEV)

end direct

else if CODE = "delay" then
begin T := 7 + time; go to at end delay
else if CODE = mgtw then

at: begin if T < time EQSD T := time;

if T = time A PRIOR then go_to direct;
EVENT :~ new EVENT NOTICE(T,X);
EVENT.RANK(PRIOR)

end at
else if (if Y == none then true else Y.EVENT == none)

then EVENT :- none else
begin if X == Y then go to exit;

comment reactivate X before/after ¥
EVENT :- new EVENT NOTICE (Y.EVENT.EVTIME,X);
1 if CODE = "pefore" then EVENT.precede(Y.EVENT)
gigg EVENT.fOllOW(Y,EVENT)

end before or after;

if EV =/= none then

begin EV.out; if SQS.empty then ERRCR end;

Lf Z =/= current then regsunme (currgnt);
2xits end ACTIVATE;

14.2.4.2 Semantics

The sequencing pfocedures Serve to organize the quasi-
parallel operation of process objects in a simulation
model. Explicit use of the basic Sequencing facilities
(detach, resume) should be avoided within SIMULATION blocks.

The statement "hold(T)", where T is a real number greater
than or equal to 2ero, will halt the active phase of

the currently active process object, and schedule its next
active phase at the system time "time + Tp", The statement
thus represents an inactive period of duration T. During
the inactive period the ISC stays within the "hold"
statement. The process object becomes suspended.

The statement "passivate" will stop the active phase

of the currently active process object and delete its
event notice. The Process object becomes passive. Its
next active phase must be scheduled from outside the
Process object. The statement thus represents an inactive
period of indefinite duration. The LSC of the process
object remains within the "passivate" statement,

The procedure "wait" will include the currently active
Process object in a referenced set, and then call the
procedure "passivate".

The statement "cancel(X)", where X is a reference to a
process object, will delete the corresponding event notice,
if any. 1If the Process object is currently active or
suspended, it becomes passive. Otherwise the statement
has no effect. The statement "cancel(current)" is
equivalent to "passivate",.

The procedure "ACTIVATE" represents an activation state-
ment, as described in section 14.2.3. The effects of 3

call on the procedure are described in terms of the

- 127 -

corresponding activatior statement. The purpose of an
activation statement is to schedule an active phase of

a process object.

Let X be the value of the object expression of the
activatiorn clause. If the activator is activate
the statement will have no effect (beyond that of
evaluating its constituent expressions) unless the
X is a passive process object. If the activator is

reactivate and X is a suspended or active process object,

the corresponding event notice is deleted .(after the
subsequent scheduling operation) and, in the latter
case, the current active phase is terminated. The

statement otherwise operates as an activate statement.

The scheduling takes place by Jenerating an event notice
for X and inserting it in the sequencing set. The type

of scheduling is determined by the scheduling clause.

An empty scheduling clause indicates direct activation,
whereby an active phase of X is initiated immediately,

The event notice is inserted in front of the one currently
at the lower end of the Sequencing set and X becomes
active. The system time remains unchanged. The formerly

active process object becomes suspended.

A timing clause may be used to specify tﬁe system time

of the scheduled active phase. The clause "delay 1",
where T is an arithmetic expression, is eqdivalent to

"at time + T". The event notice is inserted into the
Sequencing set using the specified system time as ranking
Criterion. It is normally inserted after any event notice
with the same system time; the symbol "prior" may,
however, be used to Specify insertion in front of any

event notice with the same system time.

- 128 =~

Let Y be a reference to an active or suspended process
Object. Then the clause "before Y" or "after y" may

be used to insert the event notice in a position defined
relatio; to (before or after) the event notice of Y. ‘“The
generated event notice jg given the same system time asg
that of Y. If Y is not an active or suspended process
object, no scheduling will take place.

Examgle:

The statements

activate X

activafe X before current
activate X delay O prior
activate X at time prior

are equivalent, They all specify direct activation.

The statement

reactivate current delax T

is equivalent to "hold(T)",

14.2.5 The main program

14.2.5.1 Definition

]

14.2.5.2 Semantics

It is desirable that the main prcogram of a simulation
model,‘i.e. the SIMULATION block instance, should respond
to the sequencing procedures of section 14.2.4 as if it
were itself a process object. This is accomplished by
having a process object of the class "MAIN PROGRAM" as

a permanent component of the quasi-parallel system.

14.2.6

14.2.6.1

14.2.6.2

- 129 -

The process object will represent the main program
with respect to the Sequencing procedures. Whenever
it becomes Operative, the PSC (and 0SC) will
immediately enter the main brogram as a result of

the "detach" statement (cf. section 9.2.1). The
procedure "current" will reference this process object

whenever the main Program is active.

A simulation model jis initialized by generating the
MAIN PROGRAM object and scheduling an active phase
for it at System time zero. Then the PSC proceeds

to the first user-defined statement of the SIMULATION
block, ’

Utility procedures

Definition
Z=-2iittion

procedure accum (a,b,c,d); name a,b,c;
real a,b,c,d;
begin a := a + ¢ X (time - b);
b := time; ¢ := ¢ + d

end accum;
Semantics
ZEralitlces

A statement of the form "accum (A,B,C,D)" may be
used to accumulate the "system time integral" of
the variable C, interpreted as a step function of
System time. The integral is accumulated in the
variable A. The variable B contains the system
time at which the variables were last updated.
The value of D is the current increment of the

step function.

