11,

Input-Qutput

The semantics of certain I/0 facilities will

raly on the intuitive notion of “files" ("data
sets"), which are collections of data external

to the program and organized in a sequential or
addressable manner. We shall speak of a "sequential
file" or a "direct file" according to the method of

organization.
Examples of sequential files are:

- a batch of cards
~ a series of printed lines
- input from a keyboard

- data on a tape

An example cof a cirect file is a collection of cdata
items on a drum, or a disc, with each item identified

by a unique inde::.
Thre individual logical unit in a file will be called
an "image"., tach "image" is an ordered sequence of

characters.

I/0 facilities are introduced through klock prefixing.
For the purpose of this presentation, this cecllection
of facilities will be described by a class called
"RBASICIO". The class is not explicitly available in

any users program.

The program acte as if it were enclosed in the

following block:

BASICIO (n) begin
inspect SYSIN do
inspect SYSOUT do
¢ <program>
end

where n is an integer constant representing the length
of a printed line as defined for the particular

implementation.

Within the definition of the I/0 semantics, identifiers
in CAPITAL LETTERS represent quantities which are not
accessible in a user program. A series of dots is used
to indicate that actual coding is either found elsewhere,

described informally, or implementation defined.
The overall organization of "BASICIO" is as follows:

class BASICIO (LINELENGTH) ; integer LINELENGTH;
begin ref (infile) SYSIN;

ref (infile) procedure sysin;
sysin := SYSIN;

ref (printfile) SYSOUT;

ref (printfile) procedure sysout;
sysout :- SYSOUT;

€lass FILE teievereveccennnna}

FILE class infile ..iiveeneees;

FILE class outfile ...icveees;

FILE class directfile;

outfile class printfile;

SYSIN :- new infile ("SYSIN");
SYSOUT :- new printfile ("SYSOUT");
SYSIN.open (blanks(80));
SYSOUT.open (blanks (LINELENGTH)) ;
inner;
SYSIN.close;
SYSOUT.close;

end BASICIO;

- 87 -

The integer "LINELENGTH" represents the
implementation defined number of characters

in a printed line.) .

"SYSIN" and "SYSOUT" represent a card-oriented
standard input unit and a printer-oriented
standard output unit. A program may refer to

the corresponding file objects through "sysin"
"and "sysout" respectively. Most attributes of
these file objects are directly available as a
result of the implied connection blocks enclosing

the program.

The files "SYSIN" and "SYSOUT" will be opened and
closed within "BASICIO", i.e. outside the program
itself.

11.1 The class "FILE"

11.1.1 Definition

class FILE(NAME,.....); value NAME; text NAME;

virtual: procedure open, close;

begin text imaqge;
Boolean OPEN;
procedure setpos(i); integer i;

image.setpos (i) ;

integer procedure pos;

pos := image.pos;

Boolean procedure more;

more . := image.more;

integer procedure length;

length := image.length;

end FILE;

11.1.2

Semantics

Within a program, an object of a subclass of "FILE"
is used+to represent a file. "The following four types

are predefined:

"infile" representing a sequential file where input
operations (transfer of data from file to

progran) are available.

"outfile" representing a sequential file where output
operations (transfer of data from program to

file) are available.

"directfile" representing a direct file with facilities

for both input and output.

"printfile” (a subclass of outfile) representing a
sequential file with certain facilities

oriented towards line printers.

An implementation may restrict, in any way, the use cof
these classes for prefixing or block prefixing. System
defined subclasses may, however, be provided in an

implementation.

Lach FILE object has a text attribute "NAME". It is
assumed that this text value identifies an external file
which, through an implementation defined mechanism,
remains associated with the FILE object. The effect

of several file objects representing the same (external)

file is implementation defined.

The variable "image" is used to reference a text value
which acts as a "buffer", in the sense that it contains
the external file image currently being processed. An
implementation may require that "image", at the time of
an input or output of an image, refers to a whole text

object.

RN . e

- 89_

The procedures "setpos", "pos", "more" and

"length" are introduced for reasons of convenience.

A file is either "open® or "closed",‘és indicated
by the variable "OPEN". Input or output of
images may only take place on an cpen file. A
file is initially closed (except SYSIN and SYSOUT

as seen from the program).

The procedures "open" and "close" perform the
npening and closing operations on a file. Since
the procedures are virtual quantities, they may

be redefined completely (i.e. at all access lavels)
focr objects belonging to special purpose sukclasses

of infile, oatfiie, etc.

These procedures will be implementation defined,

but they must conform to the following pattern.

procedure cpen (T,....}); text T;
begin if OPEN then ERROR;
OPEN := true;

image :~- T;

procedure close (...e)3 «ov-n
begin

OPEN := false;

image :- notext

end close;

The procedures may have additional parameters

and additional effects.

The class "infiie"

Definition

FILE class infile; virtual: Boclean procedure endfile;
' Erocédure inimage;
begin procedure open ...;
begin;
ENDFILE := false;

imagjge := notext;

setpos (length+l)
end oren;
procedure close;
begyin;
ENDFILE := true
end;
Boolean ENDFILE;

Boolean procedure endfile; endfile := ENDFILE;

procedure inimage:;

bey in
if ENDFILE then ERROR;
e v}
setpos (1)

end;

character procedure inchar;

begin if "] more then
begin inimage; if ENDFILE then ERROR
end;
inchar := image.getchar

end inchar;

Boolean procedure lastitem;

begin
L: if ENDFILE then lastitem := true else
' begin
M: if - more then
begin inimage;
go to Lj;
end;
if inchar = '_' then go to M else
setpos (pos-1) ;
end;

end lastitem;

A PR e Y S

...91_

integer procedure inint;

begin text T;
. if lastitem then ERROR;
T :- image.sub(pos,length~pos+l);

inint := T.getint;
setpos (pos+T.pos-1)
end inint;

real procedure inreal; ..ee..e;

integer procedure infrac;;

text procedure intext(w); integer w;
begin text T; integer m;
T :- blanks (w);

for m := 1 step 1 until w do

T.putchar (inchar) ;
intext :- T;
end intext;
+ee..; ENDFILE := true;

end infile;
11.2.2. Semantics

An object of the class "infile" is used to

represent a seguentially organized input file.

The procedure "inimage" performs the transfer

of an external file image into the text "image".
A run time error occurs if the text is notext

or is too short to contair the external image.

If it is longer than the extetrnal image, the
latter is left adjusted and the remainder of

the text is blank filled. The position indicator
is set to one.

If an "end of file" is encountered, an implemen-—
taltion defined text value is assigned to the text
"image" and the variable "ENDFILE" is given the
valua true. A calil on "inimage" when ENDFILE has

the value true is a run time error.

_92..

The procedure "open" will give ENDFILE the

value false and set "imace" to blanks. Otherwise
it conforms to the pattern of section 11.1.2.

The procedure "endfile" gives access to the value
of the variable ENDFILE.

The remaining procedures provide mechanisms for
"item oriented" input, which treat the file as a
"contimuous" stream of characters with a "position
indicator" (pos) which is relative to the first

character cf the current image,

The procedure "inchar" gives access to and scans past

the next character.

If the remainder of the file contains one or more
non—blank characters, "lastitem" has the value false,

and the position indicator of the file is set to the

firat non-bhlank character.

The procedures "inrzal" and "infrac" are defired in
terms of the corresponding de-editing procedures of
"image". Otherwise the definition of either procedure
is analogous to that of "inint". These threso procedures
will scan past and convert a numeric item containing the
first non-blank character and contained in one image,

excepting an arbitrary number of leading blanks.

The expression "intext!(n)" where n is a non-negative
integer is a reference to a new text of length n con-
taining the next n characters of the file. "pos" is

moved to the following character.

The procedures "inchar" and "intext" may both give
access to the contents of the image which corresponds

to an "end of file".

11.3

11.3.1

Example:

The following piece of program will input a matrix by
columns., It is assumed that consecutive elements are

separated *by blanks or contained in'different images.

The last element of each column should be followed

immediately by an asterisk.

begin array all:n,l:m] integer i,j;
procedure error;;

for j := 1 step 1 until m do

begin for i := 1 step 1 until n-1 do
begin ali,jl := inreal;

if (if sysin.more then inchar # ' ' else

false)

then error

end;

aln,jl := inreal;

if inchar # '#' then error;

next: end;.....;

end

——

The class "outfile"

Definition

FILE class outfile; virtual: procedure outimage;

begin procedure open;

begin; setpos(l); end;

procedure close;
begin ...;
if pos # 1 then outimage;
end close;
procedure outimage;
begin if -1 OPEN then ERROR;
e v}
image := nctext;
setpos (1)
end outimage;
procedure outchar(c); character c;
begin if- more then outimage;
image.putchar (c)

end outchar;

R

- 94 -

text procedure FIELD (w) ; integer w;
begin if w0V w >length then ERROR;
if pos +w - 1 ?length then outimage;

FIELD :- image.sub(pos,w) ;
setpos (pos+w)
end FIELD;
procedure outint(i,w); integer i,w;
FIELD (w) .putint (i) ;
procedure outfix(r,n,w); real r; integer n,w;
FIELD(w) .putfix(r,n);
procedure outreal(r,n,w); real r; integer n,w;
FIELD(w) .putreal{(r,n) :
procedure outfrac(i,n,w); integer i,n,w;
FIELD(w) .putfrac(i,n);
procedure outtext(T); value T; text T;
FIELD(7.length) := T;

« e 0 4

end outfile;
11.3.2 Semantics

An object of the class "outfile" is used to represent
a sequentially organized output file.

The transfer of an image from the text "image" to the
file is performed by the procedure "outimage“. The
procedure will react in an implementation defined way
if the image length is not appropriate for the external
file. The text is cleared to blanks and the position
indicator is set to 1, after the transfer.

) The procedure “"close" will call "outimage" once if the
!
position indicator is different from 1. Otherwise it |
conforms to the pattern of section 11.1.2. ;

The procedure "outchar" treats the file as a "continuous®

stream of characters. . |

SO

- 95 -

The remaining procedures provide facilities for "jten~
oriented" output. Each item is edited into a sub+test

of "imaye", whose first character is the one identified
by the ppsition indicator gf‘"image", and of a specified
width. The position indicator is advanced by a corre-
spondinyg amcunt. If an item would extend beyond the last
character of "iwmage", the procedure "outimage" is called

implicitly prior to the editing operation.

The procedures "outint", "outfix", "outreal"” and "outfrac"
are defined in terms of the corresponding editing
procedures of "image". They have an additional

integer parameter which spécifies the width of

the suutext into which the item will be edited.

For the procedure "outtext”, the itemn width is
equal to the length of the text parameter. Notice
that this parameter is called by value, which means
that a text value is an acceptable actual parameter
of "outtext".

' 11.4

11.4.1

The class "directfile"

Note: The definition of "directfile" is presently
under study by a Technical Committee appointed
by the SIMULA Standards Group.

Definition

FILE class directfile; virtual: Boolean procedure endfile;
procedure locate,inimage,outimage;

begin integer LOC;

integer procedure location; location := LOC;

procedure locate(i); integer i;
begin if “JOPEN then ERROR;

et v,

LOC := i

end locate;

procedure open;
begin
cenes o}
setpos (1) ;
locate(l);
end open;
. procedure close;
| Boolean procedure endfile; e s ene}
procedure inimage;

begin;
locate (LOC+1);

setpos (1)

end inimage;

procedure outimage;

begin;
locate (LOC+1);

image := notext;
setpos (1)

end outimage;

o pu——,

ll.402

- 97 -

character procedure inchar cenes

Boolean procedure lastitem ceree

integer procedure inint -

real. procedure inreal cerenesasee;

integer procedure infrac crenana;

text procedure intext se v e s}

procedure outchar crtee et}
text procedure FIELD s rectear e}
procedure outint cr et er e}
procedure outfix Crt i et raa e
procedure outreal ctest ettt
procedure OUtfrace.eve.e...;
procedure outtext R

end directfile;
Semantics

An object of the class "directfile" is used to
represent an external file in which the individual

images are addressable by ordinal numbers.

The variable "LOC" normally contains the ordinal
number of an external image. The. procedure
"location" gives acuess to the current value of
LOC. The procedure "locate" may be used to assign
a given value to the variable. The assignment may
be accompanied by implementation defined checks
and possibly by instructions to an external memory
device associated with the given file.

The procedure "open" will locate the first image
of the file. Otherwise it conforms to the rules

of section 11.1.2.

The procedure "endfile" may have the value true only

if the current value of LOC does not identify an
image of the external file. The procedure is

implementation defined.

11.5

11.5.1

- 98 -

The procedure "inimage" will transfer into the

text "image" a copy of the external image currently
identified by the variable LOC, if there is one.
Then the value of LOC is increased by one through

a "locate" statement. If the file does not contaian
an image with an ordinal number equal to the value
of LOC, the effect of the procedure "inimage" is
implementation defined. The procedure is otherwise

analogous to that of section 11.2.

The procedure "outimage" will transfer a copy of

the text value "image" to the external file, thereby
adding to the file an external image whose ordinal
number is equal to the current value of LOC. A run
time error occurs if the file cannot be made to contain
the image. If the file contains another image with the
same ordinal number, that image is deleted. The value
of LOC is then increased by one through a "locate"
statement. The procedure "outimage" is otherwise

analogous to that of section 11.3.

The remaining procedures are analogous to the

corresponding procedures of section 11.2 and 11.3.

The class "printfile"

Definition

outfile class printfile;
begin integer LINES PER PAGE, SPACING, LINE;

integer procedure line; line := LINE;
procedure lines per page (n); integer n; :
LINES PER PAGE := n; :

procedure spacing(n); integer n;
SPACING := n;

— 9 9 .

procedure eject(n); integer n;

begin if -} OPEN then ERROR;

if n > LINES PER PAGE then n := 1;
W Lok W LTy g PTG

. o ; i S H ,W;;"‘
LINE := n;

end eject;
procedure open ... ;

begin ; setpos(1l); eject(l)end
procedure close ... ;

begin ... ;
if pos # 1 then outimage;
SPACING := 1;

ejroct (LINES PER PAGE);
LINES PER PAGE := ... ;
LINE := 0
end;
procedure outimage;
begin if 7 OPEN V image == notext then ERROR;
if LINE > LINES PER PAGE then eject (1);

comuent output the image on the line
denoted by LINE;

LINE := LINE + SPACING;

image : = notext;

setpos (1) ;

end;

LINiS PRR PAGE := ...
SPACING := 1;

-s

end printfile;
11.5.2 Semantics

An object of the class "printfile" is used to
represent a printer-oriented output file. The
class is a subclass of "outfile". A file image

represents a line on the printed page.

The variable "LINES PER PAGE" indicates the

maximum number of physical lines that will be

- 100 -

printed on each page, including intervening
blank lines. An implementation defined value
is assigned to the variable at the time of
object generation, and when the printfile is
closed. The procedure "lines per page" may be
used to change the value. If the parameter to
"lines per page" is zero, "LINES PER PAGE" is
reset to the same implementation defined

value as at the time of object generation.

The effect is implementation defined if the

parameter is less than zero.

The variable "SPACING" represents the value by
which the variable "LINE" will be incremented
after the next printing operation. The variable
is set equal to 1 at the time of object generation
and when the printfile is closed. Its value may be
changed by the procedure "spacing”". A call on the
procedure "spacing" with a parameter less than
Zero or dgreater than "LINLES PER PAGH" constitutes
an error. The effect of a paramcter to "spacing™
which is equal to zero may be defincd by an inple-
mentation either to mean successive printing opor-

ations on the same physical line, or to be an error.

The variable "LINE" indicatces the ordina! number
of the next line to be printed, provided thal no

1"t

implicit or explicit "eject" stalcment occurs.
Its value is accessible through the procedure
"line". Note that the value of "LINE" may be
greater than "LIWNES PLR PAGL". The value of

"LINE" is zero when tne file is not open.

The procedure "eject is used to pogition to a

certain line identified by the pardmeter, n.

PRI VAR

- 101 -

The following cases can be distinguished:

n <0: ERROR
n >LINES PER PAGL: Equivalent to eject (1)

n <LINE: Position to line number n on the next page
n *LINE: Position to line number n on the current
page.

Tne tests above are performe. in the given sequence.

The procedure "outimage" operates according to the
rules of section 11.3. 1In addition, it will update
the variable "LINE".

The procedure "open" and "close” conform to the rules
of section 11.1. 1In addition, "open" will position to
the top of a page, and "close" will output the

current value of "image" if "pos" is different from
one and reset "LiNE", "SPACING" and "LINES PER PAGE™"™,

