Introauction

General purpose programming languages
. = W
High level languages, like FORTRAN, ALGOL 60 and
COBOL were originally regarded as useful for two

purposes:

~- to provide concepts and statements allowing a
precise formal description of computing processes
and also making communication between programmers

easier,

- tQ provide the non-specialist with a tool making
it possible for him to solve small and medium-sized
problems without specialist help.

t‘High level languages have succeeded in these respects.
However, strong new support for these languages is
developing from a fresh group: those who are confronted
>w1th the task of organizing and 1mplement1ng very com-

~ pPlex, highly interactive programs, e.q,. large simulation
.. programs. '

- These tasks put new requirements on a language:

in order to decompose the problem into natural,
{'ea51ly conceived components, each part should be
;,descrlbable as an lndiV1dual program. = The language

should provide for this and also contain means for
fdescrlblng the joint interactive executlon of these

sub~programs.

- in order to relate and operate a collection of programs,
the language should have the necessary powerful list

Processing and Sequencing capabilities.

1.2

- in order to reduce the already excessive amount
of debugging trouble associated with present day
methods, the language should give "reference
security". That is, the language and its compiler
should spot and not execute invalid use of data

through data referencing based on wrong assumptions.

Even if the organizational aspects of complex
programning are becoming more and more important,

the computational aspects must, of course, be taken
care of at least as well as in the current high-level

languages.

It is also evident that such a general language should
be oriented towards a very wide area of use. The
market cannct for long accommodate the present

proliferation of languages.

Spécial application languages

Until now, the computer has been a powerful but
frightening tool to most people. This should be changed
in the years to come, and the computer should be

,regarded as an obvious part of the human environment.
v Moxe and more people should get their capabilities

increased throuqh the availability of the "know-how"

.'van@JQata they need.

A condltlon for this development is that the demands
on th‘{computer user are reduced, which implies that

‘communlcatlon between man and computer is made easier.

KnoW?th'is today to a large extent made operative

throughu"application packages" covering varicus fields

of anwledge,and methods. But these packages are in

general not sufficiently flexible and expandable, and

alsougften require specialist assistance for their use.

The future seems to be "application languages"
which are problem-oriented, perhaps in the extreme.
Sucpﬂlanguages may provide the basic concepts and
methods associated with the field in question and
allow the user to formulate his specific problem

in accordance with his own earlier training.

At the same time, such languages should be flexible
in the sense that new knowledge acquired should be

easily incorporated, even by the individual user.

The need for application languades is apparently

in conflict with the desire for the non-proliferation
of languages and for general purpose programming
languages.

A solution is to design a general purpose programming
language to serve as a "substrate" for the application
languages by making it easy to orient towards special-
~ized fields, and to augment it by the introduction of
additional aggregated concepts useful as "building
~blocks" for programming.

'fgytmaking the general purpose language highly

standardized and available on many types of computers,
the application languages also become easily transferable,

~and at the same time the software development costs
:r[for the computer manufacturers may be retarded from

" 'the present rapid increase.

1.3

1.3'1

l1.3.2.

The basic characteristics of SIMULA §7

Algorithmid‘capability

SIMULA 67 contains most features of the general
algorithmic language ALGOL 60 as a subset. The

reason for choosing ALGOL 60 as starting point was
that its basic structure lent itself to extension.

It was felt that it would be impractical for the users
to base SIMULA 67 on yet another new algorithmic
language, and ALGOL 60 already had a user basis,
mainly in Europe.

Decomposition

In deallng with problems and systems containing a large
number of detalls, decomposition is of prime importance.
The. human mind must concentrate; it is a requirement
for pre01se and coherent thinking that the number of
concepts anolved is small. By decomposing a large
problem, one can obtain component problems of manageable
size to be dealt with one at a time, and each containing
a limited number of details. Suitable decomposition is
an absolute requirement if more than nne person takes

- part 1n*the analysis and programmlng.

- As - far as local quantltles are
a block is completely independent of the rest
egram,f The locality principle ensures that any
, toxa local quantity is correctly interpreted
regardless of the environment of the block.

The bléck“concept corresponds to the intuitive notion
of sub—problem" or "sub~algorithm" which is a useful
unit of decomp051t1on in orthodox application areas.

A block is a formal description, or "pattern", of an
aggregated data structure and associated algorithms
and actions. When a block is .executed, a dynamic
“inslance" of the block is geherated. In a computer,
a block instance may take the form of a memory area
containing the necessary dynamic block information and
including space for holding the contents of variables
local to the block.

A blcuk instance can be thought of as a textual copy
of its formal description, in which local variables
identify pieces of memory allocated to the block instance.
Any inner block of a block instance is still a "pattern”,
in which occurrences of non-local identifiers, however,
identify items local to textually enclosing block
instances. Such "bindings" of identifiers non-local

to an inner block remain valid for any subsequent dynamic

instance of that inner block.

The notion of block instances leads to the possibility
of generating several instances of a given block which
may co-exist and interact, such as, for example,
instances of a recursive procedure. This further leads
to the concept of a block as a "class" of "objects",
each being a dynamic instance of the‘block, and there-

fore conforming to the same pattern.

An extended block concept is introduced through a "class"
declaration and associated interaction mechanism such as
"object references" (pointers), "remote accessing"”,

"quasi-parallel" operation, and block "concatenation".

Whereas ALGOL 60 program execution consists of a
sequence of dynamically nested block instances, block
instances in, SIMULA 67 may form arbitrary list
structures. The interaction mechanisms which are
introduced, serve to increase the power of the block

concept as a means for decomposition and classification.
Classes

A central new concept in SIMULA 67 is the "object".

An object is a self-contained program (block instance),
having its own local data and actions defined by a

"class declaration". The class declaration defines a
program (data and action) pattern, and objects conforming

to that pattern are said to "belong to the same class".

If no actions are specified in the class declaration,

a class of pure data structures is defined.

Example

class order (number); integer number;

begin integer number of units, arrival duate;

real processing time;

end;

A new object belonging to the class "order” is geuerated

by an expression such as

"new order (103)"

and as many "orders” may be introduced as desired.

The need for manipulating objects and relating
objects to each other makes it necessary to
ingroduce list processing facilities (as described
beiow). -

A class may be used as "prefix" to another class
declaration, the ~by building the properties defined
by the prefix into the objects definad by the new

class declaration.

Examples:

order class batch order;

begin integer batch size;

real setup time;

©
=
o

order class single order;

begin real setup time, finishing time,weipght; cnd;

single order class plate;

Ligin real length, width: end;

New objects belonging to the "sub-:lasses"” - "batch order”
"single order” and "plate” all have the data defined

for "order"”, plus the additional data defined in the
various class declarations. 0Objects bhelonging to

the class "platé” will, for example, comprise the
following pleces of information: "number”, "number of
mmits™, "arrival date”, "processing time”, "setup time”,

"finishing time”, "weight”, "length"” and "width”.

{
If actions are defined in a class declaration, actions

conforming to this pattern may be executed by all
objects belonging to that class. The actions belonging
to one object may all be executed in sequence, as for

a procedure. But these actions may also be executed as
a series of separate subsequences, or "active phases".
Between two active phases of a given object, any number

of active phases of other objects may occur.

SIMULA 67 contains basic features necessary for organ-
izing the total program execution as a sequence of active
phases belonging to objects. These basic features may

be the foundation for aggregated sequencing principles,
of which the class SIMULATION is an example.

Application language capability

SIMULA 67 may be oriented towards a special application
area by defining a suitable class containing the
necessary problem-oriented concepts. This class can
then be used as prefix to the program by the user

interested in this problem area.

The unsophisticated user may restrict himself to using
the aggregated, problem-oriented and familiar concepts
as constituent "building blocks" in his programming.
He may not need to know the full SIMULA 67 language,
whereas the experienced programmer at the same time
has the general language available, and he may extend
the "application language" by new concepts defined by
himself.

As an example, in discrete event system simulation, the
concept of "simulated system time" is commonly used.
SIMULA 67 is turned into a simulation language by pro-
viding the class "SIMULATION" as a part of the language,

(in this case provided with the compilers).

In the class declaration

dlass SIMULATION;
begin i, end;

a "time axis" is defined, as well as two-way

lists (which may serve as queues), and also the
class "process" which gives an object the property
of having its active phases organized through the

"time axis".

A user wanting to write a simulation program starts

his program by
SIMULATION begin S et teans e

in order to make all the simulation capabilities
available in his program. If he himself wants to
generate a special-purpose simulation language to

- be used in job-shop analysis, he may write:

SIMULATION class JOBSHOP;
PEIIN cevvi e envnaneesansses.. €nd;

and between "begin" and "end" define the building

blocks he needs, such as

procéss class crane;

begin end;

process class machine;

begin procedure datacollection;

.3.5

- 10 -

The programmer now compiles this class, and whenever
he or his colleagues want to use SIMULA 67 for jobshop

simulation, they may write in their program

2
&

JOBSHOP begin «.cieevveeanovsen.

thereby making available the concepts of both
"SIMULATION" and "JOiSHOP".

This facility requires that a mechanism for the
incorporation of separately compiled classes is

available in the compiler (see section 15).

List processing capability

When many objects belonging to various classes do
co-exist as parts of the same total program, it is
necessary to be able to assign names to individual
objects, and also to relate objects to each other,

e.g. through binary trees and various other types of
list structures. A system class, "SIMSET", introducing

circular two-way lists is a part of the language.

Hence basic new types, "references", -are introduced.
References are "qualified", which implies that a

given reference only may refer to objects belonging to
the class mentioned in the qualification (or belonging
to subclasses of the qualifying class).

Examgle:

ref (order)next, previous;

ll

The operation of making a reference denote a specified

object is written ":-" and read "denotes".
Examglé:
next :~ new order (101); previous :- next;

or (also valid since "plate” is a subclass of "order”)
next :- new plate{50);
Data belonging to other objects may be referred to

and used by "remote accessing", utilizing a special

"dot notation”.

Example:

if npext.number > previous.number then;

comparing the "number” of the "order” named "next” with

the "number”of the "order” named "previous”.

The "dot notation" gives access to individual pieces
of information. "Group access" is achieved through

"connection statements".

Example:
inspect next when plate do begin end;

In the statement between begin and end all pieces of
information contained in the "plate” referenced by

"next" may be referred to directly.

1.3.6

...12_.

String handling

SIMULA 67 contains the new basic type "character".
The representation of characters is implementation
defined.

In order to provide the desired flexibility in string
handling, a compound type called "text" is introduced.
The "text" concept is closely associated with input/

output facilities.

Input/output

ALGOL 60 has been seriously affected by the lack of
standardized input/output and string handling. Clearly
a general purpose programming language should have
great flexibility in these areas. Consequently, input/
output are defined and made a standardized part of
SIMULA 67.

Standardization

For a general purpose programming language it is of
paramount importance that while the language is
uniquely defined and at the same time under strict

control, it may be extended in the future.

This is achieved by the SIMULA Standard Group, consisting

of representatives for firms and organizations having
responsibility for SIMULA 67 compilers. The statutes
lay down rigid rules to provide for both standardization

and future extensions.

The SIMULA definition which is required to be a part
of any SIMULA 67 system is named the "SIMULA 67

Common Base Definition".

Language definition

The language definition given in the following sections
must be Supplemented by the formal definition of ALGOL
60 L1i. The syntactic definitions given in this report

are to be understood in the following way.

1) Syntactic classes referred to, but not defined in
this report, refer to syntactic definitions given

in [1i.

2) Definitions in this report of syntactic classes
defined in [1] replace the corresponding
definitions given in [1].

3) Any construction of the form

<ALGOL some syntactic class>
stands for the list of alternative direct
productions of <some syntactic class> according
to the definition given in [1].

4) The comment conventions given in i1] is extended
in that the convention for "end-comment" is

replaced by:

tend <any sequence not containing ;, end, else,

when or otherwise>} - +{end %

